OMEWOR \mathcal{P} Griffiths 7.13 $=$ B_0 cosut π β $z - eurt =$ 277 W Bosnwt $=$ $enct$ TIWBSINWt G Tiffiths 7.16 $\mu_o N I \gtrless$ Inside: B $\frac{1}{\sqrt{1}}$

this then allows you to solve $for E-$ Griffiths 7. 25 B = $-\mu_{\odot}$ nI Flux through one turn is ϕ = BMR² = μ on $\sqrt{R^2}$ I this then ellows you to
for E
Griffiths 7.25
B= $\mu_{0} n T$
Flux through one turn
 ϕ = BMR² = $\mu_{0} n T R^{2} T$
There are ne turns in a
d of solened
C + the total length $Q = BMK =$
There are nl So the total flux for a length 60 the to L is $\phi = \mu_0 \, u^2 \pi R^2 \mathcal{L}$ If ^L is the self-inductance t then ϕ = L $F-$ Thus

 $L=\mu_0 n^2\pi R^2$ per unit lengte $GnrF_1H_2$ 1.28 $Q + Ld^2Q +$ dt^{2} $20 = -10$ Mins is the source earn os hommonic
motion - Undourped oscilletor $Q(t) = Q_0 \cos(\omega t + \delta) \omega$ the t=0 condition goves

 δ = 0 and \aleph_{\odot} = CV $T(f)=\frac{dQ}{dV}=f(f)=-WCVsinwt$ $d\tau$ with a Resistar, the differential equotion becomes $\frac{1}{4} \frac{d^{2}Q}{dt} + \frac{Q}{dt} + \frac{Q}{c} = 0$ This is the equation for a demped hormonic oscilletor which I hope you have plready seen in mechanics

Since the velocity is in the y direction we should switch to cortesion coordinates Since the velocity is in the y direct
we should switch to contesion coording
 $B = \frac{\mu_{\theta} I}{2\pi} \left(-\frac{y}{2} \times + \frac{\times}{7} \right)$ $B = \frac{\mu_{\theta}}{2r}$ $(-4\lambda + \frac{\lambda}{r})$
 $B = \frac{\mu_{\theta}}{2\lambda^{2}+y^{2}}$ $(-y\lambda + \lambda y)$ Since the velocity is in the
ve should switch to contesin
 $B = \frac{\mu_{\theta}}{2\pi} \left(-\frac{y}{2}x + \frac{x}{2}\right)$
 $B = \frac{\mu_{\theta}}{x^{2}+y^{2}}(-y\hat{x}+x\hat{y})$ here ^X and y are measured from the wire. Since the wire is fraveling to the right with velocity of I should replace y with y-ot in the fixed coordinate FIXEN COOP Linere System $\cancel{5}$ the right with velocity $v \pm$ show
love y with y-ot in the
sell coordinate system
= $\frac{\mu_0 \pm \gamma}{\pi^2 (y-\nu t)^2}$ (-y- $v \in \sqrt{x} \times y$)

 $NowI, use \overrightarrow{V} \times \overrightarrow{E} = -\frac{\partial B}{\partial t}$ $\begin{array}{lll} \hbar \omega & \pm & \mu \varepsilon & \overline{V_x} \overline{E} = -\frac{\partial \overline{B}}{\partial t} \\ \hline \partial \overline{B} & = & \mu \sigma \pm /2\pi & \overline{v} \left(\chi^2 + (y - \sigma t)^2 \right) \overline{\chi} + \\ \overline{\partial t} & = & \overline{(\chi^2 + (y - \sigma t)^2)}^2 & \overline{2\sigma (y - \sigma t)} (\chi^2 - y \overline{\chi}) \\ & & + \sigma t \overline{\chi} \overline{\chi} \end{array}$ Now I use $\vec{v} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$
 $\vec{J} \vec{B} = \frac{\mu_0 I}{2\pi} \left[\hat{v} (k^2 (y - vt)^3) \times \vec{A} \right]$
 $\vec{J} \vec{E} = \left[\hat{x}^2 + (y - vt)^3 \right] = \left[2\pi (y - vt)^3 \times \vec{A} + \pi t \hat{x} \right]$

At $t = 0$
 $\vec{B} = \mu_0 I / 2\pi \left[\hat{v} (k^2 + y^2) \times \vec{A} + \pi t \hat$ AtE \pm $\overline{=}\overline{O}$ $\delta t = (x+y^2)^2$ 20xy y -20y2 $\frac{1660}{100}$
 $\frac{1660}{100}$ = $\frac{165}{20}$ = $\frac{165}{20}$ = $\frac{165}{20}$ = $\frac{20}{20}$ xy $\frac{1}{9}$ = $\frac{2}{20}$
 $\frac{38}{20}$ = $\frac{165}{20}$ = $\frac{165}{20}$ = $\frac{1}{20}$ = $\frac{1}{20}$ = $\frac{1}{20}$ = $\frac{1}{20}$ = $\frac{1}{20$ $2xyy$ At this point we should more back to cylindrical coordinates poels to cylindrical coordinates
becouse at t=0 we have opeindrical symmetry

 $X = \hat{r} \cos \phi - \sin \phi \hat{\phi}$ $X = F cos \phi - sin \phi \phi$ is quotions
 $Y = F sin \phi + cos \phi$ in bock cover So the quantity in square brackets becomes ↓ 2 $(cos\Phi-sin\Phi)(cos\Phi\hat{r}-sin\Phi\hat{\Phi})$ $+2$ sind $cos\phi$ [sind \hat{r} + $cos\phi$)] $= r^{2}[(cos^{2}\phi - cos\phi sin^{2}\phi + 2sin^{2}\phi cos\phi)]^{2}$ $+\left(sin\phi-sin\phi cos\phi+2sin\phi cos\phi\right) \dot{\phi}$ $= 7$ $cos\phi [cos\phi+sin^2\phi]$ + $sin\phi$ [$sin\phi + cos\phi$] $\hat{\Phi}$] $= r^{2}(cos\phi + sin\phi)$

Plugging this into the equation
for <u>OB</u> I get for de I get $Mugging this who the equation
\n θ or $\frac{\partial B}{\partial t} = \mu_0 I \omega$ [cos ϕ + sin ϕ]
\n $\frac{\partial B}{\partial t} = \frac{\mu_0 I \omega}{2\pi r^2} [\cos{\phi} + \sin{\phi}]$$ $\frac{1}{2\pi r^2}\int_{\infty}^{\infty} \frac{1}{\sqrt{1+\frac{1}{2}r^2}} \int_{0}^{\infty} \frac{1}{\sqrt{1+\frac{1}{2}r^2}} \frac{1}{\sqrt{1+\frac{1}{2}r^2}} \frac{1}{\sqrt{1+\frac{1}{2}r^2}}$ that $\vec{v} \times \vec{e} = -\frac{\partial \vec{B}}{\partial \vec{e}}$ and $\sum_{i=1}^{n}$ $V \times E =$
 $V = 0$ I note that E cannot depend I note that E cound depend
On Z by symmetry - Also, it needs to ℓ j \cup t counot depend
unnetry - Also, it
to zero os $r\rightarrow \infty$

since we went $E \rightarrow c$ es But ∞ , $f(\phi)$ = constant = 0 $=\frac{\mu_{0}-v}{\lambda_{rr}+v}sin\theta$ This solution also setisfies egt 12 Equetions (1) and (4) are setisfied E_r = E_{\odot} = 0