

(b) $E = \frac{1}{2}CV_0$ jopdt $=$ $\frac{V_0}{R}$ - $=\int_{0}^{\infty}$ $\frac{RC}{2}e^{-2t/RC}$ $\frac{2}{L^{2}R}dt=\int_{0}^{\infty}\frac{V_{0}}{R}e^{-2t}/r dt$
= e^{-2t}/r $\int_{0}^{\infty}Pdt=\frac{1}{2}CV_{0}^{2}=E$ (c) In port (c) we had $I=$ $- \frac{dQ}{dt}$ ie decreasing the charge in the capacitor gave positive current - Now, it is the opposite it , positive current corresponds to opposité ie, positive courrent corresponds to Kirchoff low then $V_0 = QC + IR = QC + RQR$ This then gives

 $\frac{dR}{dt} = \frac{1}{RC} [CV_0 - R]$ Remember $T = RC$ $\frac{dR}{dt} = \frac{1}{RC} \left[CV_0 - R \right]$
 $\frac{dR}{dV_0} = -\frac{dG}{dV_0}$ integrating both sides \log (Q-CV_{o)} = $-$ E des
 $+$ C_2 an Some constant Q = $CV_0 + C_2 e^{-t/c}$ $(c_2 = e^{c_1})$ $AC + CO, Q = O$ This gives $C_2 = -CV_0$ Solution then $i\infty$ (t)= CV_0 [1-e^t] $I(f) = dM$ $\frac{dQ}{dt}=\frac{CV_0}{C}\frac{E}{C}$ $e^{-6/r}$ $\pm (t) = \frac{d\theta}{d\epsilon} = \frac{CV_0}{rc} \frac{e^{-t}}{c}$

 $C = RC$ ie $Y = 50$ $Griffriks 7.7/$ (a) do = Blv = emf (up to a sign that I dont)
de "Core dont right now") $I = \frac{emf}{R}$ $I = \frac{g \ell v}{R}$ The flux into the page is increasing - The current wont to setup a B-field that Raps the flux as constant as possible, i.e. a B field out of the page - By the cipht-hand rule the induced current is counterdeckwise through the resistor (b) $F = IlB$ $F = B^2e^2\sigma/R$ In the bor the current is flowing upwords

Then the force is to the left Then the force is to the left
(C) F= ma, with the acceleration being to the left,
ie, in the direction opposite to the velocity Acceleration $\frac{d\sigma}{dt} = \frac{F}{m} = -\frac{B^{2}e^{2}}{mR}$ (The minus sign is there because of this) The simple differential equation has solution 0 (f) = 0 o exp(-Be+) (d) E ⁼ $\int_{0}^{\infty}I^{2}Rdt=\int_{0}^{\infty}[Bln^{2}Rdt$ $\sigma(f) = \sigma_0 \exp(-\frac{g^2}{mR})$
 $E = \int_{0}^{\infty} \frac{1}{R} dt = \int_{0}^{\infty} \frac{g}{R} dr$
 $E = \int_{0}^{\infty} \frac{g^2}{R} dr^2 dt = \frac{g^2}{R} \int_{0}^{\infty} \exp(-\frac{2B^2}{mR}) dt$
 $E = \frac{g^2}{R} \int_{0}^{\infty} \frac{1}{\sqrt{R}} dt = \frac{g^2}{R} \int_{0}^{\infty} \exp(-\frac{2B^2}{mR}) dt$ $E = B^{2}e^{2}\sqrt{e^{2}}$. $MR = -MN^{2}$

 G nifiths 7.9 7.8 =0 This then implies that the integral SBda is the Some through any surface with any shape, 2c on page 52 $Ginff$ iths 7.10 Let X be the engle that the perpendicular to the loop mokes it with the B field $\n **B** $\overline{X^{\alpha}Y^{\omega}}$ $\alpha = w^{+} + \alpha_{0}$$ Area of loop A= a² Flux $\phi = BA sin \phi = Ba^2 sin(\omega t + \alpha_o)$ $euf=-\frac{1}{dt}$ $euf=-\omega b^2\cos \omega t$ ra