Physics 110B, Discussion Session 5

The optical length of the path traversed by a light ray traveling betteen the points P and Q is defined by the line integral along the path

$$L = \int_P^Q n d\ell$$

where n is the index of refraction along the path.

Fermat's principle states that the actual path length is the one such that L is an extreme (usually a minimum). If n is constant, the path that minimizes L is a straight line. Note that minimizes the optical path also correspond to minimizing the time taken to go from P to Q.

Let the xy plane be the boundary between two dielectrics, index of refraction n_1 for z < 0, n_2 for z > 0. Let P and Q have coordinates (x_1, y_1, z_1) and (x_2, y_2, z_2) with $z_1 < 0$. and $z_2 > 0$. The (PQ) path will cross the z plane at some point (x, y, z = 0).

Show that according to Fermat's principle

- 1. The path will lie in a plane (the plane of incidence)
- 2. Snell's law is satisfied.

Hint: we no loss of generality you can shoose the axes such that $y_1 = y_2 = 0$.