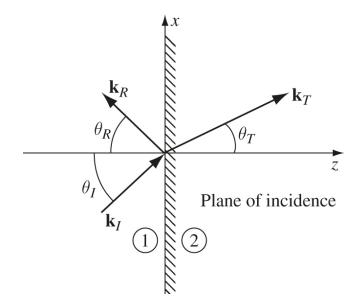
Complement to the lecture of October 22nd

Claudio C.

After the lecture some students were confused about the signs in the derivations of equations 9.103, 9.104, and 9.105.

100. 9.17.) Then (i) reads	lie plane of
$\epsilon_1(-\tilde{E}_{0_I}\sin\theta_I + \tilde{E}_{0_R}\sin\theta_R) = \epsilon_2(-\tilde{E}_{0_T}\sin\theta_T).$ Item (ii) adds nothing (0 = 0), since the magnetic fields have nents, (iii) becomes	(9.103) no <i>z</i> compo-
$\tilde{E}_{0_I}\cos\theta_I + \tilde{E}_{0_R}\cos\theta_R = \tilde{E}_{0_T}\cos\theta_T$, and (iv) says	(9.104)
$\frac{1}{U_{0R}}(\tilde{E}_{0R} - \tilde{E}_{0R}) = \frac{1}{U_{0R}}\tilde{E}_{0R}.$	(9.105)

Here is a more detailed explanation which, to make things simpler, does not use complex numbers. The starting point is Figure 9.14 in Griffiths:



Let's write unit vectors in the direction of propagation of these waves

$$\hat{k}_I = \sin \theta_I \hat{x} + \cos \theta_I \hat{z}$$
$$\hat{k}_R = \sin \theta_R \hat{x} - \cos \theta_R \hat{z}$$
$$\hat{k}_T = \sin \theta_T \hat{x} + \cos \theta_T \hat{z}$$

We are working with the polarization *i.e.*, the direction of the electric field, chosen to be in the (xz) plane. The \vec{E} fields have to be perpendicular to the \hat{k} vectors, thus:

$$\vec{E}_I = E_{0I}(\cos\theta_I \hat{x} - \sin\theta_I \hat{z})\cos(\vec{k}_I \vec{r} - \omega t)$$
$$\vec{E}_R = E_{0R}(\cos\theta_R \hat{x} + \sin\theta_R \hat{z})\cos(\vec{k}_R \vec{r} - \omega t)$$
$$\vec{E}_T = E_{0T}(\cos\theta_T \hat{x} + \sin\theta_T \hat{z})\cos(\vec{k}_T \vec{r} - \omega t)$$

Here the E_{OJ} (J = I, R, T) are just scalars (numbers in units of V/meter).

The magnetic fields are given by $\vec{B} = \frac{1}{v}(\hat{k} \times \vec{E})$, where v is the velocity of the EM wave. Denoting the velocities by v_1 and v_2 to the left and the right of the boundary between the media, and taking cross products, we get

$$\begin{split} \vec{B}_I &= \frac{E_{0I}}{v_1} \cos(\vec{k}_I \vec{r} - \omega t) \hat{y} \\ \vec{B}_R &= -\frac{E_{0R}}{v_1} \cos(\vec{k}_R \vec{r} - \omega t) \hat{y} \\ \vec{B}_T &= \frac{E_{0T}}{v_2} \cos(\vec{k}_T \vec{r} - \omega t) \hat{y} \end{split}$$

Now we are ready to apply the boundary conditions on the surface. As argued in lecture, and also explained in Griffiths, on the surface the quantity $(\vec{k}_J \vec{r} - \omega t)$, where J = I, R, T, is the same for all J. So to implement the boundary conditions we can drop the cosine terms. The boundary conditions are

(i)
$$\epsilon_1(\tilde{\mathbf{E}}_{0_I} + \tilde{\mathbf{E}}_{0_R})_z = \epsilon_2(\tilde{\mathbf{E}}_{0_T})_z,$$

(ii) $(\tilde{\mathbf{B}}_{0_I} + \tilde{\mathbf{B}}_{0_R})_z = (\tilde{\mathbf{B}}_{0_T})_z,$
(iii) $(\tilde{\mathbf{E}}_{0_I} + \tilde{\mathbf{E}}_{0_R})_{x,y} = (\tilde{\mathbf{E}}_{0_T})_{x,y},$
(iv) $\frac{1}{\mu_1}(\tilde{\mathbf{B}}_{0_I} + \tilde{\mathbf{B}}_{0_R})_{x,y} = \frac{1}{\mu_2}(\tilde{\mathbf{B}}_{0_T})_{x,y},$

Equation (i) is for the z components of the electric fields. This yields

$$\epsilon_1(-E_{0I}\sin\theta_I + E_{OR}\sin\theta_R = -\epsilon_2 E_{0T}\sin\theta_T$$

(same as equation 9.103)

Equation (iii) is for the x and y components of the electric field. The y components are zero, so we are left with the x component equation:

$$E_{0I}\cos\theta_I + E_{OR}\cos\theta_R) = E_{0T}\cos\theta_T$$

(same as equation 9.104)

Similarly, equation (iv) is for the x and y components of the magnetic field. The x components are zero, so we are left with the y component equation:

$$\frac{1}{\mu_1 v_1} (E_{0I} - E_{OR}) = \frac{1}{\mu_2 v_2} E_{0T}$$

(same as equation 9.105)