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1 Introduction

Chapter 9.3.3 of Griffiths discusses reflection and transmission of EM waves
polarized parallel to the plane of incidence at the boundary between two di-
electrics. We went through this item in class as well. Griffiths assumes that
the polarization of the reflected and transmitted waves are also in the plane of
incidence, see Figure 9.15 from the book below. The plane of incidence is the
(xz) plane and all the electric fields are in this plane also, i.e., they have no y
components.

This assumption seems obvious, but it is highly non-trivial. In fact, it turns out
that the polarizations of the incident (I), reflected (R), and transmitted (T )
waves are the same only in two limiting cases:

• When the incident polarization is in the plane of incidence (p-polarization,
where p is for parallel).
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• When the incident polarization is perpendicular to the plane of incidence
(s-polarization, where s is for senkrecht, which means perpendicular in
German).

Griffiths, as well as a few other books that I consulted, do not justify this as-
sumption at all. In his collected lectures, Feynman1, gives a physics justification
but also points out that (of course) this result is embedded in the boundary con-
ditions. However, he says ”When you have some spare time, see if you can get
the same result from the equations”.

The physical argument is that oscillating electric fields set electric dipoles in
motion. For an isotropic material, the dipoles oscillate in the direction of E⃗ and
radiate. It turns out that the radiation from an oscillating dipole is polarized
in the direction of oscillation, i.e., in the direction of E⃗. The key point is that
the boundary conditions for E⃗ fields parallel and perpendicular to the surface
are different. Thus if the incident wave has both parallel and perpendicular
components, the total E⃗ on the surface will not be in the same direction as
the incoming E⃗, and thus the polarization is not preserved by the reflected and
transmitted waves.

It would be nice to prove Griffiths assumption directly from the boundary con-
ditions, as Feynman suggests. I did not find such a proof anywhere (let me
know if you do), so here is my own.

2 Preliminaries

In everything that follows we will use the axes as defined in Figure 9.15 of
Griffiths, and subscripts I, R, and T for the incident, reflected, and transmitted
waves. All electric/magnetic fields in what follows are at the boundary between
dielectrics.

Write unit vectors in the direction of propagation of the waves. We will need
these later.

k̂I = sin θI x̂+ cos θI ẑ

k̂R = sin θRx̂− cos θRẑ

k̂T = sin θT x̂+ cos θT ẑ

(1)

We are going to work with the boundary conditions expressed in vectorial form2.

1https://www.feynmanlectures.caltech.edu/II_33.html, Section 33-4
2This is equation 7.37 in Jackson, Classical Electrodynamics, 2nd Edition.
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It may be a bit of an overkill, especially for the first two.

(i)
[
ϵ1E⃗I + ϵ1E⃗R − ϵ2E⃗T

]
· ẑ = 0

(ii)
[
E⃗I + E⃗R − E⃗T

]
× ẑ = 0

(iii)

[
1

v1
(E⃗I × k̂I) +

1

v1
(E⃗R × k̂R)−

1

v2
(E⃗T × k̂T )

]
· ẑ = 0

(iv)

[
1

µ1v1
(E⃗I × k̂I) +

1

µ1v1
(E⃗R × k̂R)−

1

µ2v2
(E⃗T × k̂T )

]
× ẑ = 0

3 Incident p-polarization

In this case the incident E⃗I is in the (xz) plane, i.e., its y-component EIy = 0.
We want to show that then the y-components of the reflected and transmitted
electric fields must also be ERy = ETy = 0.

We are interested in the y-components of the electric fields. Equation (ii) gives

ERy = ETy

The next step is trickier. We will consider the y component of equation (iv),
by taking its dot product with ŷ. This involves a bunch of terms of the form (I
suppressed the I, R, and T labels):

ŷ ·
[
ẑ × (E⃗ × k̂)

]
= ŷ ·

[
(k̂ · ẑ)E⃗ − (E⃗ · ẑ)k̂

]
= ŷ ·

[
± cos θE⃗ − Ez k̂

]
= ± cos θEy

(2)
Where the upper (+) sign is for the I and T waves, and the lower (−) sign is

for the R wave (see for yourself what k̂ · ẑ is using equation 1). In deriving this
result, I also used the vector identity

a⃗× (⃗b× c⃗) = (⃗a · c⃗)⃗b− (⃗a · b⃗)c⃗

and also the fact that k̂ is perpendicular to ŷ.

Now we are ready to take the dot product of ŷ with equation (iv), using the
result in equation 2, and also using the facts that EIy = 0, θR = θI , and
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v1/v2 = sin θI/ sin θT :

cos θI
µ1v1

ERy +
cos θT
µ2v2

ETy = 0

ERy = −µ1

µ2

v1
v2

cos θT
cos θI

ETy

ERy = −µ1

µ2

sin θI
sin θT

cos θT
cos θI

ETy

ERy = −µ1

µ2

tan θI
tan θT

ETy

Because of the relative minus sign, the two boxed equations are incompatible,
regardless of what µ1, µ2, θI , and θT could be, unless ERy = ETy = 0. QED.

4 Incident s-polarization

In this case EIx = EIz = 0, i.e., E⃗I = E0ŷ. We want to show that then
ERx = ERz = ETx = ETz = 0.

From (i) and (ii) we have

(a) ϵ1ERz = ϵ2ETz

(b) ERx = ETx

(3)

Since the waves are transverse:

E⃗R · k̂R = 0

sin θRERx − cos θRERz = 0

ERz = tan θRERx

(4)

and

E⃗T · k̂T = 0

sin θTETx + cos θTETz = 0

ETz = − tan θTETx

ERz = −ϵ2
ϵ1

tan θTERx

(5)

where in the last step I used equation 3 to change from the transmitted (T )
to the reflected (R) fields. Because of the minus sign on the right hand side of
equation 5, equations 4 and 5 are incompatible, regardless of what ϵ1, ϵ2, θR,
and θT could be, unless ERx = ERz = 0. Then, using equation 3, we also
get ETx = ETz = 0. QED.
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5 Incident mixed polarization

In this case the reflected and transmitted wave will not have the same polar-
ization with respect to the plane of incidence as the incoming wave. Funda-
mentally, this is because the p- and s-components of the incoming wave have
different reflection/transmission coefficients.

We can write the incident electric field as a superposition of a p- and s-polarization:

E⃗I = Epp̂I + Esŷ

where p̂I = cos θI x̂− sin θI ẑ = ŷ × k̂I (see the Figure on page 1).

The reflected field is

E⃗R =
α− β

α+ β
Epp̂R +

1− αβ

1 + αβ
Esŷ

where (following Griffiths Chapter 9.3.3):

• p̂R = cos θI x̂+ sin θI ẑ = −ŷ × k̂R (see Figure on page 1)

• α = cos θT / cos θI (Griffiths Eq. 9.108)

• β = µ1v1
µ2v2

(Griffiths Eq. 9.106)

• α−β
α+β is the ratio of the reflected to the incident electric field amplitude for

p-polarization. (Griffiths Eq. 9.109)

• 1−αβ
1+αβ is the same ratio but for s-polarization. (Griffiths Problem

9.17, also in Homework 4).

Comparing the expressions for E⃗I and E⃗R we can say that the polarization with
respect to the plane of incidence is preserved only if α−β

α+β = 1−αβ
1+αβ , i.e., α = 1,

i.e., θT = θI , which happens only at normal incidence θI = 0. This is not
surprising because in this case the p- and s-polarizations are indistinguishable3.
In fact, at normal incidence the plane of incidence cannot even be defined. A
similar argument can be applied to the transmitted wave. Therefore we conclude
that in the oblique incidence case polarization is only preserved for
pure p- or s-polarization.

3In our convention p-polarization at normal incidence corresponds to E⃗I = E x̂, and s-
polarization corresponds to E⃗I = E ŷ. In both cases, at normal incidence, E⃗I is parallel to
the surface. These two cases are then physically the same.
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