
EM fields from charge moving with constant

velocity.

Claudio C.

This is a more complete derivation of example 10.4 in Griffiths, i.e., the EM
fields generated by a particle moving with constant velocity.

The sketch below sets the stage and defines the various quantities. We are
interested, to start, in the electric field at the point of interest and at time t,
i.e., E⃗(r⃗, t).

The starting point is equation 10.72 in Griffiths, which gives the electric field
as a function of velocity v⃗(tR) and acceleration a⃗(tR)

E⃗(r⃗, t) =
q

4πϵ0

s

(s⃗ · u⃗)3/2
[
(c2 − v2)u⃗+ s⃗× (u⃗× a⃗)

]
where u⃗ = cŝ− v⃗. In our case a⃗ = 0. Thus

E⃗(r⃗, t) =
q

4πϵ0

(c2 − v2)

(s⃗ · u⃗)3/2
su⃗ (1)

From the sketch we see that

r⃗ = O⃗P + s⃗ = tRv⃗ + s⃗

s⃗ = r⃗ − tRv⃗

s⃗ = r⃗ − (t− s

c
)v⃗

(2)
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Now let’s look at the quantity su⃗ which enters in equation (1). Note that the

E⃗(r⃗, t) is in the direction of su⃗.

su⃗ = cs⃗− sv⃗

= cr⃗ − ctv⃗ + sv⃗ − sv⃗

= c(r⃗ − tv⃗)

= c(r⃗ − O⃗Q)

= cR⃗

(3)

This is a remarkable result. We find that E⃗(r⃗, t) is in the direction of R⃗, i.e.,
the vector that joins the position of interest with the position of the charge at
time t, not at the retarded time tR. This is probably not what you expected
to find!

Next, in order to finish the job, we need to work out the quantity (s⃗ · u⃗)3/2 which
appears in Equation 1.

Note that the perpendicular components of s⃗ and R⃗ are the same. This implies
that

|s⃗× v⃗|2 = |R⃗× v⃗|2

s2v2 − (s⃗ · v⃗)2 = R2v2 − (R⃗ · v⃗)2

s2v2 − (s⃗ · v⃗)2 = R2v2 −R2v2 cos2 θ

(4)

where I used the identity |⃗a× b⃗|2 = a2b2 − (⃗a · b⃗)2.

Taking the square of equation 3:

c2R2 = (cs⃗− sv⃗)2

c2R2 = c2s2 + s2v2 − 2css⃗ · v⃗
c2s2 − 2css⃗ · v⃗ = c2R2 − s2v2

(5)

Shifting our attention to s⃗ · u⃗, which is what we want:

s⃗ · u⃗ = s⃗ · (cŝ− v⃗) = cs− s⃗ · v⃗
(s⃗ · u⃗)2 = c2s2 − 2css⃗ · v⃗ + (s⃗ · v⃗)2

Using equation 5 this becomes:

(s⃗ · u⃗)2 = c2R2 − s2v2 + (s⃗ · v⃗)2

and using equation (4) this becomes:

(s⃗ · u⃗)2 = c2R2 −R2v2 +R2v2 cos2 θ

= c2R2
[
1 + β2(cos2 θ − 1)

]
= c2R2(1− β2 sin2 θ)
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were β = v/c. Now we can finally write:

(s⃗ · u⃗)3 = c3R3(1− β2 sin2 θ)3/2 (6)

Putting eqation 3 and equation 6 into equation 1:

E⃗(r⃗, t) =
q

4πϵ0

c2 − v2

c3R3(1− β2 sin2 θ)3/2
cR⃗

E⃗(r⃗, t) =
q

4πϵ0

(1− β2)

R2(1− β2 sin2 θ)3/2
R̂

which is equation 10.75 in Griffiths. The magnetic field is given by equation
10.73 in Griffiths as

B⃗(r⃗, t) =
1

c
ŝ× E⃗(r⃗, t)

which becomes

B⃗(r⃗, t) =
1

cs
s⃗× E⃗(r⃗, t)

B⃗(r⃗, t) =
1

cs
(r⃗ − tv⃗ +

s

c
v⃗)× E⃗(r⃗, t) (using equation 2)

B⃗(r⃗, t) =
1

cs
(R⃗+

s

c
v⃗)× E⃗(r⃗, t) (using the last three lines of equation 3)

B⃗(r⃗, t) =
1

c2
v⃗ × E⃗(r⃗, t)

which is equation 10.76 in Griffiths (in the last step I used the fact that R⃗ ×
E⃗(r⃗, t) = 0 since the electric field is in R⃗ direction).
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