{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "from scipy.special import gammaincc" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Compare limits Bayesian (two diff. prior) and frequentist
\n", "on counting experiments with background
\n", "No uncertainty on the background.\n" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "# Here are counts and backgrouns\n", "N = [0, 2, 0, 2, 0, 2]\n", "B = [0.5, 0.5, 2.0, 2.0, 3.5, 3.5]\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To calculate the frequentist limit use result\n", "$\\sum_{n=0}^N \\frac{\\mu^n e^{-\\mu}}{N!} = \\frac{1}{N!}\\Gamma(N+1, \\mu)$

\n", "\n", "where $\\Gamma(a,b) = \\int_b^{\\infty} t^{a-1}e^{-t} dt$" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "N = 0 and B = 0.5\n", "Frequentist limit = 2.5\n", "Bayesian flat prior limit = 3.0\n", "Bayesian 1/sqrt(S+B) prior limit = 2.4\n", " \n", "N = 2 and B = 0.5\n", "Frequentist limit = 5.8\n", "Bayesian flat prior limit = 5.8\n", "Bayesian 1/sqrt(S+B) prior limit = 5.1\n", " \n", "N = 0 and B = 2.0\n", "Frequentist limit = 1.0\n", "Bayesian flat prior limit = 3.0\n", "Bayesian 1/sqrt(S+B) prior limit = 2.7\n", " \n", "N = 2 and B = 2.0\n", "Frequentist limit = 4.3\n", "Bayesian flat prior limit = 4.8\n", "Bayesian 1/sqrt(S+B) prior limit = 4.3\n", " \n", "N = 0 and B = 3.5\n", "Frequentist limit = -0.5\n", "Bayesian flat prior limit = 3.0\n", "Bayesian 1/sqrt(S+B) prior limit = 2.7\n", " \n", "N = 2 and B = 3.5\n", "Frequentist limit = 2.8\n", "Bayesian flat prior limit = 4.3\n", "Bayesian 1/sqrt(S+B) prior limit = 3.9\n", " \n" ] } ], "source": [ "for n,b in zip(N,B):\n", "\n", " print(\"N =\",n, \"and B =\",b)\n", " # Frequentist first.\n", " s = -b\n", " ds = 0.01\n", " while gammaincc(n+1, s+b) > 0.05:\n", " s = s + ds\n", " print('Frequentist limit = ', round(s,1))\n", " \n", " # Now Bayesian. A bit brute force \n", " # (25 is about infty for our purposes)\n", " sarray = np.linspace(0, 25, 2500)\n", " integrand = np.power((sarray+b),n) * np.exp(-(sarray+b))\n", " totalIntegral = integrand.sum() # up to factor ds\n", " integral = np.cumsum(integrand) / totalIntegral\n", " index = (integral>0.95).argmax() # index of limit\n", " s = sarray[index]\n", " print('Bayesian flat prior limit = ', round(s,1))\n", " \n", " integrand = np.power((sarray+b),n) * np.exp(-(sarray+b)) / np.sqrt(sarray+b)\n", " totalIntegral = integrand.sum() # up to factor ds\n", " integral = np.cumsum(integrand) / totalIntegral\n", " index = (integral>0.95).argmax() # index of limit\n", " s = sarray[index]\n", " print('Bayesian 1/sqrt(S+B) prior limit = ', round(s,1))\n", " \n", " print(\" \")\n", " \n", " " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.10" } }, "nbformat": 4, "nbformat_minor": 5 }