Minuit

* The work-horse fitter in HEP for 30+ years

* Originally written in Fortran in the 70s

* C++ interface in the 90s, then full rewrite in C++ (Minuit2)

* Used by ROOT and ROOFIT behind the scenes

* Now also a python interface available (iMinuit) with nice support for
jupyter notebooks

What does Minuit need from you.

Based on what we learnt from last time:

* A “cost function” to minimize (eg NLL or y2) as a function of parameters and data

* An initial guess of the parameters

* A value of A(cost-function) to report uncertainties (eg, for 1o: 0.5 for NLL and 1.0
for y2)

* Function that gives derivative of “cost function” wrt to parameters

* Not really necessary, can be calculated numerically internally by Minuit

* Pick minimizer to use

* Workhorse is MIGRAD, reports “parabolic” covariance matrix at the end
* MINQOS after MIGRAD to calculate non parabolic errors

What else can you do with Minuit

* Automated plots of cost-function scans, contour plots

e Can fix some fit parameter(s), ie, turn them into constants
e Can also be done in steps, ie, minimize once, then fix a parameter(s), then minimize again

* Can fine tune some parameters about internals of Minuit, eg “Strategy”, condition on when to
call it “good enough” (“EDM”=estimated distance to minimum)

 Better to leave it as defaults

* Impose limits on parameters, eg, a<P<b

e Convenient to eg avoid unphysical regions of parameter space

e Although I think that if your minimization is going too far into the unphysical region you probably would like to
know?

e Convenient to avoid problems with taking logs of negative quantities
e eg: NLL includes calculations of logs of pdf, in unphysical region pdf can go negative, eg, pdf of a S+B fit
f(mass) = { S*Gauss(mass|u,c) + B*fgs(x) } / (S+B)
f(mass) can go negative if S is too negative

Example, Phys. Rev. D 73, 011103(R)

Events / 2 MeV

Likelihood

6
5
4
3
2
1
0 s
52 521 522 523 524 525 526 527 528 529 5.3
mps(GeV)
0. (a)
0.
0.
o.
-2 -7 o 7 3 4

No. of events

-

Argus + Gaussian unbinned NLL fit

to mass distribution.

Deficit of signal events

(Gaussian component at m=5.28 GeV)

Fit
_ +0.7
Actually fit wanted to go even lower but could not

Ca refu I Wit h 2.3.1 The transformation for parameters with limits

[intro:limits]
I i ' ' I it S For variable parameters with double sided limits a (lower) and b (upper), M uses the following transformation:
Hn‘ = arcsin (2 fc_n__a l)
b—a
—a
Pox = a+ (sin Py + 1)

2

so that the internal value P,,,, can take on any value, while the external value P, can take on values only between the
lower limit @ and the upper limit b. Since the transformation is necessarily non-linear, it would transform a nice linear
problem into a nasty non-linear one, which is the reason why limits should be avoided if not necessary. In addition, the
transformation does require some computer time, so it slows down the computation a little bit, and more importantly,
it introduces additional numerical inaccuracy into the problem in addition to what is introduced in the numerical
calculation of the FCN value. The effects of non-linearity and numerical roundoff both become more important as the
external value gets closer to one of the limits (expressed as the distance to nearest limit divided by distance between
limits). The user must therefore be aware of the fact that, for example, if they put limits of (0, 10'") on a parameter,
then the values 0.0 and 1.0 will be indistinguishable to the accuracy of most machines.

For this purpose single sided limits on parameters are provided by M , with their transformation being:

Lower bound a:

Pi"‘ = :t\/(Pext —a+ 1)2 -1

P = a—1+VP3“+1

Upper bound b:

Pu= £y/(b— P +1)2-1

Pext= b+1-— Pi'f“'i-l

Minuit Example .

17.5 1 L0 osigu=1
N\ bg uncertainty

* Fit a 3 bin “histogram” to pS+B =5 b b
e 20% uncorrelated uncertainty on each o

background bin 00 &\&

75 1
N

501 AN NN {

2 D e SO

0.0 T T T T T

05 10 15 20 25 30 35
£(Nu B) — (uS; + Bi)Nie_(“SiJrBi) I (B,
(’lLL?) T H N' >< p (7’) # This is some fake data in 3 bins
(A data = np.array([12, 7, 4])
sig = np.array([2, 2, 2)) # signal predicted with mu=1l

NLL — Z _N’L log(,LLSZ —|— B’L) —|— MSZ + B’L — log(pdf(Bz)) bg = np.array([10, 5, 2)) # bg predicted

err = (0.2%*bg # bg uncertainty

Results

mu = 1.066 +/= 0.754
Minos errors:

“Parabolic error”

-0.696 +0.826 *

HTML link
Jupyter link

“Profile likelihood
errors”

Just for fun....
Not an elliptical

Background, first bin

TV

e
m;poﬂ

4
Ll I L

0.0 05 10 1'5 2.'0 25 3.0
Signal Strength

— 68%
— O5%
® fitvalue

L Ll I Ll Ll I

-0.5 00 05 10 1'5 2.'0 25 3.0
Signal Strength

35

http://hep.ucsb.edu/people/claudio/Phys250/minuit/MinuitExample.html
http://hep.ucsb.edu/people/claudio/Phys250/minuit/MinuitExample.ipynb

