. ope N, —u
Poisson probability: p(N|w) =~
Upper confidence/credible limit (CL or o ) on p:
Notation, e.g.
Bayesian: CL=95%
[¥e ¢ uNe # Ti(wydu = CL o =0.05
where

[(u)du is the prior pdf for u and the integrand is the posterior pdf.
C is a constant so that the posterior integrates to 1 over the full range of u

The choice of IT(u) is arbitrary (subjective)
A “flat” is constant over the allowed physical region u = 0 and 0 elsewhere: [1(u) = ©(u)

Ho
/ CuNe ™ dy = CL =1—«
0

Frequentist u, is such that Frequentist:
N §n e~ Ha L, is the value of p that
Z = ' — 1—-—CL = « corresponds to a p-value=a
—0 v given that N events are
observed

In this simple case the answer happens to be the same.

Solve numerically or by connecting to %2 distribution 1



With perfectly known background B:

p(N|u) =

pe

(S_|_B)N€—(S+B)

N

Bayesian limit with a flat prior becomes:

Frequentist limit becomes:

a(s)

Sa
/ C(S+B)Ne 5HBgs = CL =1—«
0

N

n=0

(S + B)" e~ (SatB)

= 1—-—CL = «
n!

Problem, if B>N in some cases that limit does not exist inside the S=0 physical region
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B

3.2
3.2

0.0

e.g.:
for N=0 B=3.2 S=0 is excluded at more than 95% CL.
This means that we also exclude the

background-only hypothesis.

By definition, this will happen 5% of the times!



Enter CLS

_ CLsip  Yopo(S+ B)ne=(5+5) /)

CL4(S
) CLp ij:oB”e—B/n!

And find S such that CL(S) = .

The numerator is the same as in the previous page

The denominator is 1-pValue(B). By construction it is <1

A justification is that we want to compare the S-hypothesis with the B-only hypothesis
This is a ratio of probability (likelihood ratio)

It does not have perfect frequentist properties (it “overcovers”

But it protects against the pathological problem of the previous slide.

It so happens that numerically this is the same as Bayesian with a flat prior.

0.200 N=0 B=3.2 0200 N=1B=3.2
0.175 4 —— CLs+s 0.175 -
0.150 CLs 0.150 -
0.125 1 0.125 -
0.100 1 0.100 -
0.075 0.075 1
T I e e AN BANESEY Sy e e R 0.050 -
0.025 \ 0.025 -
0.000 T T T . . : . 0.000 . . . . . . .
00 05 10 15 20 25 30 35 40 00 05 10 15 20 25 30 35 40




Systematics: 1 =¢S5 + 8B
where € and [3 have some uncertainty
(for simplicity assume that the “central values” are e=[3=1)

letd = (¢, B) : nuisance parameters
The Poisson probability for the observation of N is
B /LNG_“ (ES+5B)N€_(€S+BB)

PINIS, B.0) = == = N

Bayesian:
Integrate over the pdf for the nuisance parameters p(@)d@

p(S)dS = C ( / (S, B, e*)Neﬂ(SaB@p(*‘)d@*) dS

Where | assumed a flat prior for S and Cis a normalization factor.

This can then be taken as a posterior probability for S from which

we can extract (credible) intervals and limits in the usual way.
This process goes under the name of marginalization

4



Frequentist:
Given the data (ie: N) we have a p-value as function of both S and 6

Extract a p-value for any S assumption by averaging over 0

p—value(5) = /p—value(S, 0) p(0) dd

Based on this p-value can put limitson S
This includes the pdf for the true value of the nuisance

parameters p(é)dé

Of course the pdf of the true value is not a frequentist concept.

Hvybrid Frequentist-Bayesian




Limit

95% limit, no systematics
N=3 N=4

—— Bayesian limits
—— Frequentist limits

Unphysical Region

0 1 2 3 4 5
Number of Background Events
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Feldman Cousins



Reminder of frequentist construction

90% Central Confidence Belt (Gaussian)

90% central
confidence belt

True Mean u

Measured Mean X

For this example:
* unit gaussian
* physical region: u =0



Assume | measure x=2

90% Central Confidence Belt (Gaussian)

90% central
confidence belt

True Mean u

|
|
|
|
|
|
l'
2
n

Measured Mean X



If | instead want the 90% upper limit

90% limit (Gaussian)

True Mean u

- Frequentist 90% limit
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Measured Mean X

Note: if X is too negative the 90% limit is in the unphysical region
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“Conservative” limit

90% limit (Gaussian)

. I . l IIIIIIIIIII
— Q0% conservative limit I A,
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Measured Mean X

The coverage at the low end is not 90% anymore (conservative)



Flip flop issue

B

— Flip-flopped at 30 belt

True Mean u
L

Measured Mean X

Suppose an experimentalist decides:

* |If I have a > 30 effect, | will quote a two-sided interval

e Otherwise | will guote an upper limit

The resulting belt has a kink, and in the kink region the coverage is < 90%



Feldman-Cousins interval construction

* Goal is to construct intervals that
1. Avoid the flip flopping problem.
2. Transition smoothly away from the non-physical region

* The prescription to construct an interval for a given ,

Instead of

» Setting upper/lower limit by including/excluding all x greater or smaller than a
given value until some sum-of-prob value is reached

Or

* Selecting a central region with certain equal prob of x falling above or below
region

Do the following:

 Start from x which maximizes some ranking criteria R, eg, R=p(x| ). Continue
to add values of x ranked by R until the total probability is CL (e.g., 90%)

14



Feldman Cousins Ranking ,, _ P(z|n)
p(z| o)

Where L, is the value of 1 that maximizes p(x[u) and is in the
physical region.

In the (unit) Gaussian case:

e Ifx>0: R =e (*x~W?/2

e Ifx<O0: R = e_(x_ﬂ)z/z/ e—xz/Z
Then

* Whether u=0is (limit on u) or is not (measurement of u) in
the 90% (or whatever) interval is “automatic”

* Solves the issue with unphysical region

15



True Mean u

— Flip-flopped at 3o belt
-== Feldman Cousins belt

Measured Mean X

16



True Mean u

B
- Flip-flopped at 3o belt
5 | === Feldman Cousins belt
-== Bayesian flat prior 90% limit
4 -t
3 -
2 -
1 . -‘-"a":ci’
———— - w
™ “‘-‘-" ,I
---- &
0 ! | — |
-4 o 0 2

Measured Mean X
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Criticism of. frequentist approach

* A not-so-good experiment 95% limit, no systematics
that gets “lucky” can claima '
better limit than a good 61
experiment 5 -

 Compare (N=0B=0.1) and *
(N=0 B=2.5) curves. '

. N
» Effect also for Bayesian, but  *] \
less pronounced, and 19 T Sevestan Imits
—— Frequentist limits
absent for N=0 0- _ _
Unphysical Region

* Itis not fair! -7 j : : . :

Number of Background Events

Limit
W
=
I
o

The uneasiness comes from the fact that we unconsciously interpret limits as
probabilistic statements on the mean (“p is < xx with 95% probability”)

(And why else would we do the experiment anyway????)

But this is a Bayesian statement (“the probability of the true value...”)

A frequesntist analysis is after a different question.... 18



Enter “expected limits”

* It has now become customary to also quote the “expected
limit” (mean? median?) and also the 1o and 2o intervals

* ”If | was to repeat this experiment many times, in the absence of
a signal, | will on average get limit = <u>and a limit in the interval
(L, U,] 68% of the times”, etc.

* For a one-bin Poisson experiment this does not make sense
* Results quantized: N=0, 1, 2,.... with probs. p = pg, P1, Py, --
* Resulting limits quantized pu=p,, 1, W, ...

* <u>that | quote is a limit that in most case | will not get
e OK, | can live with that

* But cannot build intervals [u; u,] that cover exactly 68%..of
the cases
* Again, unless we are numerically lucky

19



Expected limits...what is actually done then?
IMHO, a cheat

* Pretend that the nuisances will change within uncertainties
from experiment to experiment

* Then (say) all experiments with N=0 would not yield a unique
limit py but a set of different limits clustered more or less
tightly around p,,.

* You then have an expected continuous distribution of u and it
makes sense to talk about 68% intervals [u; u,] etc.

* This does not correspond to reality

* Maybe defensible before some of the nuisances are constrained by
auxiliary measurements, eg, control regions.

* Not defensible for theoretical uncertainties, for example

* Be careful about these pre-packaged calculations of expected
intervals in low stats cases (not just single channels)

* |n addition to the questionable procedure, | have seen standard tools
give crazy results in some cases.

20



It gets worse (still IMHO)

* The standard procedure to quote expected limits at the
LHC is such that the expected limit depends on the
observation

* Thought process:

e Suppose | calculate B=1.51+0.5 before opening the cookie-jar
(aka look at the signal region)

e | observe N=2.

e Therefore it is likely that B is a bit larger (say B=1.740.4 ... | made
this number up, it would come from a fit, but you get the idea).

* Therefore | calculate the expected limit based on B=1.740.4

LHC stats gurus, ca 2010:
“Silly you, it depends on what you mean by expected”
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