Lognormal

The lognormal pdf for a variable y > 0 is:

$$p(y)dy = \frac{1}{\sqrt{2\pi s}} \frac{1}{y} \exp(-\frac{\log^2 y}{2s^2}) dy$$

Some properties of the lognormal:

- 1. It is the pdf for the product of many positive random variables, just as the normal is the pdf for the sum of random variables.
- 2. The median (not the mean) is y = 1
- 3. $\lim_{y\to 0} p(y) = 0$
- 4. $w = \log y$ is a gaussian of mean 0 and $\sigma = s$
- 5. Substituting $y = x/\mu$ and $s = \log k$ with $k = 1 + \sigma/\mu$ yields a distribution for x which is approximately gaussian of mean μ and standard deviation σ

Proof of 3

Take $z = \log y$, i.e., $y = e^z$. Then

$$\begin{split} \lim_{y \to 0} p(y) &= \lim_{z \to -\infty} p(z) \\ p(z) &= \frac{1}{\sqrt{2\pi s}} \ e^{-z} \ e^{-z^2/(2s^2)} &= \frac{1}{\sqrt{2\pi s}} \ e^{-z-z^2/(2s^2)} \\ &-\infty, \ e^{-z-z^2/(2s^2)} \to e^{-z^2/(2s^2)} \to 0. \end{split}$$

Proof of 4

as $z \rightarrow$

dw = dy/y, therefore $p(w)dw = \frac{1}{\sqrt{2\pi s}}e^{-w^2/(2s^2)}dw$.

Proof of 5

Note $dy = dx/\mu$ so $dy/y = (dx/\mu)/(x/\mu) = dx/x$. Therefore:

$$p(x)dx = \frac{1}{\sqrt{2\pi}\log k} \frac{1}{x} \exp(-\frac{\log^2 x/\mu}{2\log^2 k}) dx$$

Take x/μ close to 1 and $\sigma \ll \mu$. Then $\log x/\mu = \log(1 + (x - \mu)/\mu) \approx (x - \mu)/\mu$. Similarly, $\log k \approx \sigma/\mu$.

$$p(x)dx \approx \frac{1}{\sqrt{2\pi\sigma}} \frac{\mu}{x} e^{\frac{-(x-\mu)^2}{2\sigma^2}} dx$$

and since $\mu/x \approx x/\mu \approx 1$, this is just a gaussian for x.