Lognormal

The lognormal pdf for a variable $y>0$ is:

$$
p(y) d y=\frac{1}{\sqrt{2 \pi} s} \frac{1}{y} \exp \left(-\frac{\log ^{2} y}{2 s^{2}}\right) d y
$$

Some properties of the lognormal:

1. It is the pdf for the product of many positive random variables, just as the normal is the pdf for the sum of random variables.
2. The median (not the mean) is $y=1$
3. $\lim _{y \rightarrow 0} p(y)=0$
4. $w=\log y$ is a gaussian of mean 0 and $\sigma=s$
5. Substituting $y=x / \mu$ and $s=\log k$ with $k=1+\sigma / \mu$ yields a distribution for x which is approximately gaussian of mean μ and standard deviation σ

Proof of 3

Take $z=\log y$, i.e., $y=e^{z}$. Then

$$
\begin{gathered}
\lim _{y \rightarrow 0} p(y)=\lim _{z \rightarrow-\infty} p(z) \\
p(z)=\frac{1}{\sqrt{2 \pi} s} e^{-z} e^{-z^{2} /\left(2 s^{2}\right)}=\frac{1}{\sqrt{2 \pi} s} e^{-z-z^{2} /\left(2 s^{2}\right)} \\
\text { as } z \rightarrow-\infty, e^{-z-z^{2} /\left(2 s^{2}\right)} \rightarrow e^{-z^{2} /\left(2 s^{2}\right)} \rightarrow 0
\end{gathered}
$$

Proof of 4

$d w=d y / y$, therefore $p(w) d w=\frac{1}{\sqrt{2 \pi s}} e^{-w^{2} /\left(2 s^{2}\right)} d w$.

Proof of 5

Note $d y=d x / \mu$ so $d y / y=(d x / \mu) /(x / \mu)=d x / x$. Therefore:

$$
p(x) d x=\frac{1}{\sqrt{2 \pi} \log k} \frac{1}{x} \exp \left(-\frac{\log ^{2} x / \mu}{2 \log ^{2} k}\right) d x
$$

Take x / μ close to 1 and $\sigma \ll \mu$.
Then $\log x / \mu=\log (1+(x-\mu) / \mu) \approx(x-\mu) / \mu$. Similarly, $\log k \approx \sigma / \mu$.

$$
p(x) d x \approx \frac{1}{\sqrt{2 \pi} \sigma} \frac{\mu}{x} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}} d x
$$

and since $\mu / x \approx x / \mu \approx 1$, this is just a gaussian for x.

