
Poisson Distribution

1 Derivation

Consider an event that occurs at random times. We want p(N |µ) where N is
the number of occurrences, and µ is the average number of occurrences in a give
time interval t.
λ = probability per unit time of event occurring
∆p = λ∆t = probability of occurrence in small time ∆t.
Let t = M∆t. Since t is finite and eventually we’ll take ∆t→ 0, M is large and
eventually we’ll take M →∞. For simplicity, M is an integer.
Let p0(t) be the probability that no event occurs in t.

p0(t) = (1− λ∆t)M =

(
1− λt

M

)M
p0(t) = 1+M

(
− λt
M

)
+
M(M − 1)

2!

(
− λt
M

)2

+
M(M − 1)(M − 2)

3!

(
− λt
M

)3

+....

but

lim
M→∞

M(M − 1) = M2 and lim
M→∞

M(M − 1)(M − 2) = M3 etc.

therefore

lim
M→∞

p0(t) = 1 + (−λt) +
(−λt)2

2!
+

(−λt)3

3!
+ ... = e−λt

p0(t) = e−λt

Let p1(t) be the probability that one event happens between t = 0 and t. Then
p1(t + dt) is the probability that no event happens before t multiplied by the
probability that it happens in dt plus the probability that one event happens
before t multiplied by the probability that no other event happens in dt. This
can be written as

p1(t+ dt) = p0(t)λdt+ p1(t)(1− λdt) = e−λtdt+ p1(t)(1− λdt)

dp1(t)

dt
= λe−λt − λp1(t)

The solution of this simple differential equation is
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p1(t) = λte−λt

Next we will show by induction that pN (t) = (λt)Ne−λt/N !. This works for
N = 0 and N = 1. Let’s assume that it works for N and show that it also works
for N + 1.
Using the same reasoning that led us to a differential equation for p1 in terms
of p0, we can write

dpN+1(t)

dt
= x− λ pN+1(t) + λ pN (t)

Let’s see if our assumed solution works. With the assumed solution we have

dpN+1(t)

dt
= − λ(λt)N+1e−λt

(N + 1)!
+

λ(λt)Ne−λt

(N)!
= − λpN+1(t) + λpN (t)

Yes, it works. Identifying µ = λt we have

p(N |µ) =
µNe−µ

N !

2 Mean

Clearly < N >= µ. It is easy to verify it:

< N >=

n=∞∑
n=0

n p(n|µ) = e−µ
n=∞∑
n=0

nµn

n!
= µe−µ

n=∞∑
n=1

µn−1

(n− 1)!
= µe−µe+µ = µ

3 Variance

< N2 >=

n=∞∑
n=0

n2 p(n|µ) = µe−µ
n=∞∑
n=1

nµn−1

(n− 1)!

< N2 >= µe−µ

(
n=∞∑
n=1

(n− 1)µn−1

(n− 1)!
+

n=∞∑
n=1

µn−1

(n− 1)!

)

< N2 >= µe−µ

(
µ

n=∞∑
n=2

µn−2

(n− 2)!
+

n=∞∑
n=1

µn−1

(n− 1)!

)
= µe−µ (µeµ+eµ) = µ2+µ

Since σ2 =< N2 > − < N >2 we get

σ2 = µ
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4 Sum of Poisson variables

Let a and b be independent Poisson random variables with < a >= a0 and
< b >= b0. The random variable c = a + b is also a Poisson variable with
c0 ≡< c >= a0 + b0. Proof:

p(c = k) =

k∑
i=0

p(b = k − i)p(a = i) = e−(a0+b0)
k∑
i=0

bk−i0 ai0
(k − i)!i!

Multiply top and bottom by k!:

p(c = k) =
e−(a0+b0)

k!

k∑
i=0

(
k

i

)
bk−i0 ai0 =

e−(a0+b0)

k!
(a0 + b0)k =

ck0 e
−c0

k!

5 Limit of large N

For large N use Stirling formula N ! ≈
√

2πNe−NNN . Then

p(N |µ) =
µNe−µ

N !
≈ 1√

2πN

( µ
N

)N
eN−µ

Write N = µ(1 + δ) with µ >> 1 and δ << 1, i.e., large N and large µ and the
two are not too different from each other. Then µ/N = 1/(1 + δ), N − µ = δµ
and
√
N =

√
µ
√

1 + δ. Substituting we get

p(N |µ) ≈ eδµ√
2πµ

(1 + δ)−µ(1+δ)−0.5 =
1

α

eδµ√
2πµ

Where α = (1 + δ)µ(1+δ)+0.5.

logα =

(
µ(1 + δ) +

1

2

)
log(1 + δ)

Since δ is small, expand log(1 + δ) ≈ δ − δ2/2. Then to order µδ2

logα ≈ µδ +
1

2
µδ2 → 1

α
≈ e−δµe−δ

2µ/2

Plugging 1/α back in the equation for p(N |µ):

p(N |µ) ≈ exp(−δ2µ)√
2πµ

But since N = µ(1 + δ), δ2µ = (N − µ)2/µ. So, finally

p(N |µ) ≈ 1√
2πµ

e−(N−µ)
2/(2µ)

A gaussian of mean µ and standard deviation
√
µ.
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6 Weighted events

In HEP we often have to deal with samples of weighted events, e.g., when
we make a histogram where we add two or more Monte Carlo components
with different weights. The prescription is that the uncertainty in each bin is
σ2 =

∑
w2
i where the sum is over all events and wi is the weight of event i.

This prescription can be implemented using the “Sumw2” prescription in ROOT
histograms.
Lets justify this for two samples N1 and N2 with weights w1 and w2 and means
µ1 and µ2. The argument easily generalizes to more samples, even to a sample
where every weight is different, as can happen in some event generators that
output weighted events.

Since we are interested in N = w1N1 +w2N2 the estimate of the mean of N
is w1µ1 + w2µ2 = w1N1 + w2N2.
Let’s now estimate the variance of N . The variance of w1N1 is

Var(w1N1) =< (w1N1)2 > − < w1N1 >
2= w2

1 < N2
1 > −w2

1 < N1 >
2

Var(w1N1) = w2
1(< N2

1 > − < N1 >
2= w2

1Var(N1) = w2
1N1 =

∑
i

w2
i

were wi = w1 is the weight of the i− th event in the 1st sample. The variance
Var(w2N2) is given by a similar sum over the 2nd sample. Then since N1 and
N2 are independent Var(N) = Var(w1N1) + Var(w2N2), Var(N) =

∑
w2
i where

now the sum is over all events.
Note that the pdf for N is not a Poisson anymore. In the limit of large number
of events in each sample it is approximately Gaussian.
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