Poisson Distribution

1 Derivation

Consider an event that occurs at random times. We want p(N|u) where N is
the number of occurrences, and p is the average number of occurrences in a give
time interval ¢.

A = probability per unit time of event occurring

Ap = MAt = probability of occurrence in small time At.

Let t = M At. Since t is finite and eventually we’ll take At — 0, M is large and
eventually we’ll take M — oco. For simplicity, M is an integer.

Let po(t) be the probability that no event occurs in t.
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Let p1(t) be the probability that one event happens between ¢t = 0 and ¢. Then
p1(t + dt) is the probability that no event happens before ¢ multiplied by the
probability that it happens in dt plus the probability that one event happens
before ¢ multiplied by the probability that no other event happens in dt. This
can be written as

p1(t + dt) = po(t)Adt + py(t)(1 — Adt) = e Mdt 4 py(t)(1 — \dt)

dp1(t)
dt
The solution of this simple differential equation is
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p1(t) = Me ™

Next we will show by induction that py(t) = (M)Ne **/N!. This works for
N =0and N = 1. Let’s assume that it works for N and show that it also works
for N + 1.

Using the same reasoning that led us to a differential equation for p; in terms
of pg, we can write
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Let’s see if our assumed solution works. With the assumed solution we have
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Yes, it works. Identifying p = At we have

pNe
N

p(N|p) =
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Clearly < N >= pu. It is easy to verify it:
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3 Variance
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4 Sum of Poisson variables
Let a and b be independent Poisson random variables with < a >= a¢ and

< b >= by. The random variable ¢ = a + b is also a Poisson variable with
cog =< ¢ >= ag + by. Proof:
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Multiply top and bottom by k!
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5 Limit of large N

For large N use Stirling formula N!~ v/2rNe VN~ . Then
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Write N = u(1+9) with 4 >> 1 and § << 1, i.e., large N and large p and the
two are not too different from each other. Then u/N =1/(1+§), N —u=du
and VN = VIV1 4+ 4. Substituting we get
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Where oo = (1 + 5)u(1+6)+0.5.

1
loga = (,u(l +9) + 2) log(1 4+ 0)
Since 4 is small, expand log(1 + ) ~ § — §2/2. Then to order pd>
1 1
log o = 6 + §u62 o = e /2
Plugging 1/« back in the equation for p(N|u):
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But since N = pu(1 +6), 62u = (N — u)?/p. So, finally

p(N|p) ~
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A gaussian of mean p and standard deviation /.




6 Weighted events

In HEP we often have to deal with samples of weighted events, e.g., when
we make a histogram where we add two or more Monte Carlo components
with different weights. The prescription is that the uncertainty in each bin is
02 = > w? where the sum is over all events and w; is the weight of event i.
This prescription can be implemented using the “Sumw2” prescription in ROOT
histograms.
Lets justify this for two samples N7 and Ny with weights w; and ws and means
w1 and po. The argument easily generalizes to more samples, even to a sample
where every weight is different, as can happen in some event generators that
output weighted events.

Since we are interested in N = w1 N7 + wa N5 the estimate of the mean of NV
is w1 + wapy = w1 N1 4+ waoNo.
Let’s now estimate the variance of V. The variance of wi Ny is

Var(wi Ny) =< (w1 N1)? > — < wy Ny >2=wi < N > —w? < Ny >?
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were w; = wy is the weight of the ¢ — th event in the 1st sample. The variance
Var(wgN3) is given by a similar sum over the 2nd sample. Then since Ny and
N, are independent Var(N) = Var(w; Ny) + Var(waNz), Var(N) = 3" w? where
now the sum is over all events.

Note that the pdf for N is not a Poisson anymore. In the limit of large number
of events in each sample it is approximately Gaussian.



