Poisson Distribution

1 Derivation

Consider an event that occurs at random times. We want $p(N \mid \mu)$ where N is the number of occurrences, and μ is the average number of occurrences in a give time interval t.
$\lambda=$ probability per unit time of event occurring
$\Delta p=\lambda \Delta t=$ probability of occurrence in small time Δt.
Let $t=M \Delta t$. Since t is finite and eventually we'll take $\Delta t \rightarrow 0, M$ is large and eventually we'll take $M \rightarrow \infty$. For simplicity, M is an integer.
Let $p_{0}(t)$ be the probability that no event occurs in t.

$$
\begin{gathered}
p_{0}(t)=(1-\lambda \Delta t)^{M}=\left(1-\frac{\lambda t}{M}\right)^{M} \\
p_{0}(t)=1+M\left(-\frac{\lambda t}{M}\right)+\frac{M(M-1)}{2!}\left(-\frac{\lambda t}{M}\right)^{2}+\frac{M(M-1)(M-2)}{3!}\left(-\frac{\lambda t}{M}\right)^{3}+\ldots
\end{gathered}
$$

but

$$
\lim _{M \rightarrow \infty} M(M-1)=M^{2} \text { and } \lim _{M \rightarrow \infty} M(M-1)(M-2)=M^{3} \text { etc. }
$$

therefore

$$
\begin{gathered}
\lim _{M \rightarrow \infty} p_{0}(t)=1+(-\lambda t)+\frac{(-\lambda t)^{2}}{2!}+\frac{(-\lambda t)^{3}}{3!}+\ldots=e^{-\lambda t} \\
p_{0}(t)=e^{-\lambda t}
\end{gathered}
$$

Let $p_{1}(t)$ be the probability that one event happens between $t=0$ and t. Then $p_{1}(t+d t)$ is the probability that no event happens before t multiplied by the probability that it happens in $d t$ plus the probability that one event happens before t multiplied by the probability that no other event happens in $d t$. This can be written as

$$
\begin{gathered}
p_{1}(t+d t)=p_{0}(t) \lambda d t+p_{1}(t)(1-\lambda d t)=e^{-\lambda t} d t+p_{1}(t)(1-\lambda d t) \\
\frac{d p_{1}(t)}{d t}=\lambda e^{-\lambda t}-\lambda p_{1}(t)
\end{gathered}
$$

The solution of this simple differential equation is

$$
p_{1}(t)=\lambda t e^{-\lambda t}
$$

Next we will show by induction that $p_{N}(t)=(\lambda t)^{N} e^{-\lambda t} / N$!. This works for $N=0$ and $N=1$. Let's assume that it works for N and show that it also works for $N+1$.
Using the same reasoning that led us to a differential equation for p_{1} in terms of p_{0}, we can write

$$
\frac{d p_{N+1}(t)}{d t}=x-\lambda p_{N+1}(t)+\lambda p_{N}(t)
$$

Let's see if our assumed solution works. With the assumed solution we have

$$
\frac{d p_{N+1}(t)}{d t}=-\frac{\lambda(\lambda t)^{N+1} e^{-\lambda t}}{(N+1)!}+\frac{\lambda(\lambda t)^{N} e^{-\lambda t}}{(N)!}=-\lambda p_{N+1}(t)+\lambda p_{N}(t)
$$

Yes, it works. Identifying $\mu=\lambda t$ we have

$$
p(N \mid \mu)=\frac{\mu^{N} e^{-\mu}}{N!}
$$

2 Mean

Clearly $\langle N\rangle=\mu$. It is easy to verify it:

$$
<N>=\sum_{n=0}^{n=\infty} n p(n \mid \mu)=e^{-\mu} \sum_{n=0}^{n=\infty} \frac{n \mu^{n}}{n!}=\mu e^{-\mu} \sum_{n=1}^{n=\infty} \frac{\mu^{n-1}}{(n-1)!}=\mu e^{-\mu} e^{+\mu}=\mu
$$

3 Variance

$$
\begin{gathered}
<N^{2}>=\sum_{n=0}^{n=\infty} n^{2} p(n \mid \mu)=\mu e^{-\mu} \sum_{n=1}^{n=\infty} \frac{n \mu^{n-1}}{(n-1)!} \\
<N^{2}>=\mu e^{-\mu}\left(\sum_{n=1}^{n=\infty} \frac{(n-1) \mu^{n-1}}{(n-1)!}+\sum_{n=1}^{n=\infty} \frac{\mu^{n-1}}{(n-1)!}\right) \\
<N^{2}>=\mu e^{-\mu}\left(\mu \sum_{n=2}^{n=\infty} \frac{\mu^{n-2}}{(n-2)!}+\sum_{n=1}^{n=\infty} \frac{\mu^{n-1}}{(n-1)!}\right)=\mu e^{-\mu}\left(\mu e^{\mu}+e^{\mu}\right)=\mu^{2}+\mu
\end{gathered}
$$

Since $\sigma^{2}=<N^{2}>-<N>^{2}$ we get

$$
\sigma^{2}=\mu
$$

4 Sum of Poisson variables

Let a and b be independent Poisson random variables with $<a>=a_{0}$ and $=b_{0}$. The random variable $c=a+b$ is also a Poisson variable with $c_{0} \equiv<c>=a_{0}+b_{0}$. Proof:

$$
p(c=k)=\sum_{i=0}^{k} p(b=k-i) p(a=i)=e^{-\left(a_{0}+b_{0}\right)} \sum_{i=0}^{k} \frac{b_{0}^{k-i} a_{0}^{i}}{(k-i)!i!}
$$

Multiply top and bottom by $k!$:

$$
p(c=k)=\frac{e^{-\left(a_{0}+b_{0}\right)}}{k!} \sum_{i=0}^{k}\binom{k}{i} b_{0}^{k-i} a_{0}^{i}=\frac{e^{-\left(a_{0}+b_{0}\right)}}{k!}\left(a_{0}+b_{0}\right)^{k}=\frac{c_{0}^{k} e^{-c_{0}}}{k!}
$$

5 Limit of large N

For large N use Stirling formula $N!\approx \sqrt{2 \pi N} e^{-N} N^{N}$. Then

$$
p(N \mid \mu)=\frac{\mu^{N} e^{-\mu}}{N!} \approx \frac{1}{\sqrt{2 \pi N}}\left(\frac{\mu}{N}\right)^{N} e^{N-\mu}
$$

Write $N=\mu(1+\delta)$ with $\mu \gg 1$ and $\delta \ll 1$, i.e., large N and large μ and the two are not too different from each other. Then $\mu / N=1 /(1+\delta), N-\mu=\delta \mu$ and $\sqrt{N}=\sqrt{\mu} \sqrt{1+\delta}$. Substituting we get

$$
p(N \mid \mu) \approx \frac{e^{\delta \mu}}{\sqrt{2 \pi \mu}}(1+\delta)^{-\mu(1+\delta)-0.5}=\frac{1}{\alpha} \frac{e^{\delta \mu}}{\sqrt{2 \pi \mu}}
$$

Where $\alpha=(1+\delta)^{\mu(1+\delta)+0.5}$.

$$
\log \alpha=\left(\mu(1+\delta)+\frac{1}{2}\right) \log (1+\delta)
$$

Since δ is small, expand $\log (1+\delta) \approx \delta-\delta^{2} / 2$. Then to order $\mu \delta^{2}$

$$
\log \alpha \approx \mu \delta+\frac{1}{2} \mu \delta^{2} \rightarrow \frac{1}{\alpha} \approx e^{-\delta \mu} e^{-\delta^{2} \mu / 2}
$$

Plugging $1 / \alpha$ back in the equation for $p(N \mid \mu)$:

$$
p(N \mid \mu) \approx \frac{\exp \left(-\delta^{2} \mu\right)}{\sqrt{2 \pi \mu}}
$$

But since $N=\mu(1+\delta), \delta^{2} \mu=(N-\mu)^{2} / \mu$. So, finally

$$
p(N \mid \mu) \approx \frac{1}{\sqrt{2 \pi \mu}} e^{-(N-\mu)^{2} /(2 \mu)}
$$

A gaussian of mean μ and standard deviation $\sqrt{\mu}$.

6 Weighted events

In HEP we often have to deal with samples of weighted events, e.g., when we make a histogram where we add two or more Monte Carlo components with different weights. The prescription is that the uncertainty in each bin is $\sigma^{2}=\sum w_{i}^{2}$ where the sum is over all events and w_{i} is the weight of event i. This prescription can be implemented using the "Sumw2" prescription in ROOT histograms.
Lets justify this for two samples N_{1} and N_{2} with weights w_{1} and w_{2} and means μ_{1} and μ_{2}. The argument easily generalizes to more samples, even to a sample where every weight is different, as can happen in some event generators that output weighted events.

Since we are interested in $N=w_{1} N_{1}+w_{2} N_{2}$ the estimate of the mean of N is $w_{1} \mu_{1}+w_{2} \mu_{2}=w_{1} N_{1}+w_{2} N_{2}$.
Let's now estimate the variance of N. The variance of $w_{1} N_{1}$ is

$$
\begin{aligned}
& \operatorname{Var}\left(w_{1} N_{1}\right)=<\left(w_{1} N_{1}\right)^{2}>-<w_{1} N_{1}>^{2}=w_{1}^{2}<N_{1}^{2}>-w_{1}^{2}<N_{1}>^{2} \\
& \operatorname{Var}\left(w_{1} N_{1}\right)=w_{1}^{2}\left(<N_{1}^{2}>-<N_{1}>^{2}=w_{1}^{2} \operatorname{Var}\left(N_{1}\right)=w_{1}^{2} N_{1}=\sum_{i} w_{i}^{2}\right.
\end{aligned}
$$

were $w_{i}=w_{1}$ is the weight of the $i-t h$ event in the 1 st sample. The variance $\operatorname{Var}\left(w_{2} N_{2}\right)$ is given by a similar sum over the 2 nd sample. Then since N_{1} and N_{2} are independent $\operatorname{Var}(N)=\operatorname{Var}\left(w_{1} N_{1}\right)+\operatorname{Var}\left(w_{2} N_{2}\right), \operatorname{Var}(N)=\sum w_{i}^{2}$ where now the sum is over all events.
Note that the pdf for N is not a Poisson anymore. In the limit of large number of events in each sample it is approximately Gaussian.

