Pearson's correlation

$$
\rho_{X, Y}=\operatorname{corr}(X, Y)=\frac{\operatorname{cov}(X, Y)}{\sigma_{X} \sigma_{Y}}=\frac{\mathrm{E}\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]}{\sigma_{X} \sigma_{Y}}
$$

1	0.8	0.4	0	-0.4	-0.8	-1
				$8 \sqrt{6}$		
1	1	1		-1	-1	-1

https://en.wikipedia.org/wiki/Correlation

Spearman ρ

The Spearman correlation coefficient is defined as the Pearson correlation coefficient between the rank variables. ${ }^{\beta}$
For a sample of size n, the n raw scores X_{i}, Y_{i} are converted to ranks $\mathrm{R}\left(X_{i}\right), \mathrm{R}\left(Y_{i}\right)$, and r_{s} is computed as

$$
r_{s}=\rho_{\mathrm{R}(X), \mathrm{R}(Y)}=\frac{\operatorname{cov}(\mathrm{R}(X), \mathrm{R}(Y))}{\sigma_{\mathrm{R}(X)} \sigma_{\mathrm{R}(Y)}}, \quad \text { https://en.wikipedia.org/wiki/Spearman\%27s rank correlation coefficient }
$$

Beam constrained mass $M_{b c}$ aka energy substituted mass $M_{E s}$

$e^{+} e^{-} \rightarrow \Upsilon(4 S) \rightarrow B \bar{B}$
$\operatorname{Mass}(\Upsilon)=10.578 \mathrm{GeV}$
vs. $\quad B \rightarrow D^{0}\left(\rightarrow K_{s} \pi^{+} \pi^{-}\right) \pi^{+}$
2* $\operatorname{Mass}(B)=10.558 \mathrm{GeV}$
In CM frame (which is known),
$E_{\text {expected }}(B)=\frac{1}{2} \operatorname{Mass}(\Upsilon)$
Thus for a fully reconstructed decay there are two pieces of information:

1. The invariant mass
2. The energy

To (almost) decorrelate the two, B reconstruction is characterized by

$$
\begin{array}{ll}
\text { 1. } & \mathbf{M}_{\mathbf{b c}}^{2}=\mathbf{E}_{\text {expected }}^{2}-P_{\text {measured }}^{2}(B) \\
\text { 2. } & \Delta E=E_{\text {measured }}(B)-E_{\text {expected }}(B)
\end{array}
$$

$P_{\text {measured }}^{2}$ and therefore $M_{B C}$ does not depend on the particle ID,
π vs. μ vs. K. But $\Delta \mathrm{E}$ does

The momentum of the B is very small
$\boldsymbol{P}(\boldsymbol{B})=\sqrt{\frac{1}{4} \operatorname{Mass}^{2}(\Upsilon)-\operatorname{Mass}^{2}(\boldsymbol{B})}=325 \mathrm{MeV}$
$B \rightarrow D^{0}\left(\rightarrow K_{s} \pi^{+} \pi^{-}\right) K^{+}$

Threshold (Argus) function

$$
\sim x \sqrt{1-x^{2}} \exp \left(-\frac{\chi^{2}\left(1-x^{2}\right)}{2}\right)
$$

$$
\text { with } \quad x=2 M_{b c} / M(\Upsilon)
$$

Semi-justification for this functional form in next page....

Note how the $D \pi$ background can be distinguished from the DK signal in the $\Delta \mathrm{E}$ distribution but not in the $M_{B C}$ distribution.

Argus function

- Recall $M_{b c}^{2}=\mathbb{E}_{\text {expected }}^{2}-P_{\text {measured }}^{2}(B)=\frac{M^{2}(Y)}{4}-P^{2}$
- Argus function represents random combination (combinatorics) of particles whose measured momentum is P
- $P=\sqrt{\frac{M^{2}(\Upsilon)}{4}-M_{B C}^{2}}=\frac{M(Y)}{2} \sqrt{1-x^{2}} \quad$ where as on the previous page $\quad x=\frac{2 M_{b c}}{M(\Upsilon)}$
- $d P=\frac{M(Y)}{2} \frac{(-x)}{\sqrt{1-x^{2}}} d x$
- The volume element in 3d momentum space is
$d V=P^{2} d P=\frac{M^{2}(Y)}{4}\left(1-x^{2}\right) \frac{M(Y)}{2} \frac{(-x) d x}{\sqrt{1-x^{2}}}=-\frac{M^{3}(Y)}{8} x \sqrt{1-x^{2}} d x \propto x \sqrt{1-x^{2}} d x$
- Phase space is proportional to $d V \rightarrow$ expect a function that represents combinatorics to look something like

$$
f(x) \sim g(x) x \sqrt{1-x^{2}} d x
$$

where $g(x)$ is some (\sim slowly) function of x near $x=1$

- It is found that $g(x)=e^{-\frac{\lambda^{2}}{2}\left(1-x^{2}\right)}$ where λ is a fitted parameter, works quite well

