Breit Wigner, relativistic and non-relativistic

The non-relativistic and relativistic Breit Wigner distributions are given by equations 1 and 2 respectively.

$$
\begin{align*}
p(M) d M & =\frac{1}{2 \pi} \frac{\Gamma}{\left(M-M_{0}\right)^{2}+\frac{\Gamma^{2}}{4}} d M \tag{1}\\
p(M) d M & =\frac{k}{\left(M^{2}-M_{0}^{2}\right)^{2}+M_{0}^{2} \Gamma^{2}} d M \tag{2}
\end{align*}
$$

with $k=2 \sqrt{2} M \Gamma \gamma /\left(\pi \sqrt{\left(M_{0}^{2}+\gamma\right.}\right)$ and $\gamma=M_{0} \sqrt{M_{0}^{2}+\Gamma^{2}}$.
If $\Gamma \ll M_{0}$, then $\gamma \approx M_{0}^{2}$ and $k \approx \frac{2}{\pi} M_{0}^{2} \Gamma$.
Also since $M+M_{0} \approx 2 M_{0},\left(M^{2}-M_{0}^{2}\right)^{2}=\left(M+M_{0}\right)\left(M-M_{0}\right)\left(M+M_{0}\right)(M-$ $\left.M_{0}\right) \approx 4 M_{0}^{2}\left(M-M_{0}\right)^{2}$. Putting all of these ingredients into equation 2 , the relativistic Breit Wigner approximates as

$$
\begin{gathered}
p(M) d M \approx \frac{2}{\pi} \frac{M_{0} \Gamma}{4 M_{0}^{2}\left(M-M_{0}\right)^{2}+M_{0}^{2} \Gamma^{2}} d M \\
p(M) d M \approx \frac{1}{2 \pi} \frac{\Gamma}{\left(M-M_{0}\right)^{2}+\frac{\Gamma^{2}}{4}} d M
\end{gathered}
$$

which is the same as the expression for the non relativistic case (equation 1).

