Binomial Distribution

Let p be the probability of success in a single trial and define q as $q=1-p$. The probability of k successes in N trials is $p(k \mid N)=\binom{N}{k} p^{k} q^{N-k}$.

1 Mean and Variance

We use the trick that $\langle x+y>=<x>+<y>$ and $\operatorname{Var}(\mathrm{x}+\mathrm{y})=\operatorname{Var}(\mathrm{x})+$ $\operatorname{Var}(\mathrm{y})$ where x and y are independent random variables. We take the N trials as N independent random variables x_{i} with $x_{i}=0$ or 1 for failure or success, so that $<k>=N \cdot<x_{i}>$ and $\sigma^{2}=\operatorname{Var}(\mathrm{k})=\mathrm{N} \cdot \operatorname{Var}\left(\mathrm{x}_{\mathrm{i}}\right)$. Then

$$
<x_{i}>=0 \cdot q+1 \cdot p=p \quad \rightarrow \quad \mu=<k>=N p
$$

(not a surprise...). For the variance:

$$
<x_{i}^{2}>=0^{2} \cdot q+1^{2} \cdot p=p
$$

$$
\operatorname{Var}\left(\mathrm{x}_{\mathrm{i}}\right)=<\mathrm{x}_{\mathrm{i}}^{2}>-<\mathrm{x}_{\mathrm{i}}>^{2}=\mathrm{p}-\mathrm{p}^{2}=\mathrm{p}(1-\mathrm{p})=\mathrm{pq} \quad \rightarrow \quad \sigma^{2}=N p q
$$

2 Gaussian limit

For large $N p$ and large $N q$ the binomial distribution can be approximated as a gaussian in the "neighborhood" of the mean, i.e., for k not to different from $N p$. We use Stirling formula $X!\approx \sqrt{2 \pi X} X^{X} e^{-X}$ to approximate $\binom{k}{N}$:

$$
\begin{gather*}
p(k \mid N) \approx \frac{N^{N} e^{-N} \sqrt{2 \pi N}}{k^{k} e^{-k} \sqrt{2 \pi k}(N-k)^{N-k} e^{N-k} \sqrt{2 \pi(N-k)}} p^{k} q^{N-k} \\
p(k \mid N) \approx\left(\frac{N p}{k}\right)^{k}\left(\frac{N q}{N-k}\right)^{N-k} \sqrt{\frac{N}{2 \pi k(N-k)}} \tag{1}
\end{gather*}
$$

Define a small $\delta=k-N p=N q-(N-k)$. Then

$$
\log \left(\frac{N p}{k}\right)=-\log \left(1+\frac{\delta}{N p}\right) \quad \text { and } \quad \log \left(\frac{\mathrm{Nq}}{\mathrm{~N}-\mathrm{k}}\right)=-\log \left(1-\frac{\delta}{\mathrm{Nq}}\right)
$$

Using the expansion $\log (1+x) \approx x-x^{2} / 2$, after a bit of algebra we get

$$
\log \left[\left(\frac{N p}{k}\right)^{k}\left(\frac{N q}{N-k}\right)^{N-k}\right] \approx-\frac{\delta^{2}}{2 N p q}=-\frac{(k-N p)^{2}}{2 N p q}=-\frac{(k-\mu)^{2}}{2 \sigma^{2}}
$$

where $\mu=N p$. Taking the exponent of the log and plugging it back into equation 1 :

$$
\begin{equation*}
p(k \mid N) \approx \sqrt{\frac{N}{2 \pi k(N-k)}} e^{-\frac{(k-\mu)^{2}}{2 \sigma^{2}}} \tag{2}
\end{equation*}
$$

But $k(N-k)=(\delta+N p)(N q-\delta) \approx N^{2} p q=N \sigma^{2}$. Plugging this into equation 2 gives

$$
\begin{equation*}
p(k \mid N) \approx \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(k-\mu)^{2}}{2 \sigma^{2}}} \tag{3}
\end{equation*}
$$

3 Bayesian Estimates of p

For k successes in N trials the posterior pdf for p is

$$
\pi(p) d p \quad \propto \quad p^{k}(1-p)^{N-k} \Pi(p) d p \quad \propto \quad b(p ; k, N) \Pi(p) d p
$$

where I used the symbols π and Π for the posterior and prior, respectively; $b(x ; a, b)$ is the beta distribution defined for $0 \leq x \leq 1$:

$$
b(x ; a, b)=\frac{1}{B(a, b)} x^{a-1}(1-x)^{b-1}=\frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} x^{a-1}(1-x)^{b-1}
$$

where $B(a, b)$ is the Beta function. It is often convenient to pick a beta prior $\Pi(p)=b(p ; a, b)$ which then yields a posterior ${ }^{1}$

$$
\begin{equation*}
\pi(p) d p=b(p ; k+a, N-k+b) d p \tag{4}
\end{equation*}
$$

Note $(a, b)=(1,1)$ is a flat prior and $(a, b)=(0.5,0.5)$ is the Jeffreys prior. The beta prior for the binomial process is a "conjugate prior", i.e., a prior that yields a posterior of the same functional form. Then based on the posterior one can construct credible intervals.

[^0]
3.1 Bayesian Gaussian Approximation

Given the gaussian limit derived in Section 2, it is not surprising that in the same limiting case the posterior for p will be a gaussian. The factor in the exponent of equation 3 is $-(k-N p)^{2} /(2 N p q)$. Writing it in terms of the observed quantity $p_{0} \equiv k / N$ and approximating $p \approx p_{0}$ and $q=(1-p) \approx\left(1-p_{0}\right) \equiv q_{0}$, the posterior with a flat prior becomes

$$
\pi(p) d p \propto e^{-\frac{\left(p-p_{0}\right)^{2}}{2 \sigma_{0}^{2}}} d p
$$

with $\sigma_{0}^{2}=p_{0} q_{0} / N$.
We can get to the same result starting from the beta distribution of equation 4. The mean and variance of $b(x ; \alpha, \beta)$ are $\mu=\alpha /(\alpha+\beta)$ and $\sigma^{2}=\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}$, respectively. (This can be shown easily from the integrals $\int_{0}^{1} x b(x ; \alpha, \beta) d x \propto$ $\int_{0}^{1} b(x ; \alpha+1, \beta) d x$ and $\int_{0}^{1} x^{2} b(x ; \alpha, \beta) d x \propto \int_{0}^{1} b(x ; \alpha+2, \beta) d x$ and using the normalization of the beta distribution in terms of the Beta function). With a flat prior $a=b=1$, and for $k \gg 1$ and $N-k \gg 1$, the posterior of equation 4 has mean $\frac{(k+1)}{(k+1+N-k+1)} \approx \frac{k}{N}=p_{0}$ and variance $\frac{(k+1)(N-k+1)}{(k+1+N-k+1)^{2}(k+1+N-k+1+1)} \approx$ $\frac{k(N-k)}{N^{3}}=\frac{p_{0} q_{0}}{N}=\sigma_{0}^{2}$. The fact that the functional form of this posterior is also gaussian can be shown going through a very similar procedure as was done in Section 2. The algebra is a little different because the normalization factors are not the same, i.e, $\binom{N}{k}=1 /((N+1) B(k+1, N-k+1))$, see lemma A. 1 of https://projecteuclid.org/euclid.ejs/1472829397.

4 Frequentist Intervals, Clopper-Pearson

For k successes in N trials the two-sided central frequentist interval $\left[p_{L}, p_{H}\right]$ at a CL of α is given by solving

$$
\begin{aligned}
& \sum_{i=0}^{k}\binom{i}{N} p_{L}^{i}\left(1-p_{L}\right)^{N-i}=\frac{\alpha}{2} \\
& \sum_{i=k}^{N}\binom{i}{N} p_{H}^{i}\left(1-p_{H}\right)^{N-i}=\frac{\alpha}{2}
\end{aligned}
$$

The interval can also be expressed in terms of the incomplete beta function $B(x ; a, b)=\int_{0}^{x} t^{a-1}(1-t)^{b-1} d t$ as

$$
B\left(\frac{\alpha}{2} ; k, N-k+1\right)<p<B\left(1-\frac{\alpha}{2} ; k+1, N-k\right)
$$

There are software packages to calculate these intervals. Note that in a strict frequentist sense the Clopper-Pearson intervals constructed this way are conservative, i.e., they overcover. This has to do with the quantized nature of the observation (k is an integer).

[^0]: ${ }^{1}$ See for example https://tinyurl com/3n9b222k

