Binomial Distribution

Let p be the probability of success in a single trial and define ¢ as ¢ = 1 — p.
The probability of k successes in N trials is p(k|N) = (JZ)pqu’k.

1 Mean and Variance

We use the trick that < x +y >=< z > + <y > and Var(x +y) = Var(x) +
Var(y) where x and y are independent random variables. We take the N trials
as N independent random variables z; with z; = 0 or 1 for failure or success,
so that < k >= N- < z; > and 0 = Var(k) = N - Var(x;). Then

<z;>=0-q+1-p=p — ’,u:<k‘>=Np‘

(not a surprise...). For the variance:

<z?>=0%-q+1%-p=p

Var(xj) =< x? > — <x; >’=p—-p>=p(l—p)=pq —

2 Gaussian limit

For large Np and large Ng the binomial distribution can be approximated as
a gaussian in the "neighborhood” of the mean, i.e., for k£ not to different from
Np. We use Stirling formula X! ~ v27XX¥Xe~X to approximate (1@)
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Define a small § =k — Np = Nqg— (N — k). Then

N N
log (kp> = —log (1 + ]\(;p) and log <qu> = —log (1 — 1\?q>



Using the expansion log(1 + x) ~ x — 2% /2, after a bit of algebra we get
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where 4 = Np. Taking the exponent of the log and plugging it back into
equation 1:
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But k(N — k) = (6 + Np)(Nq — ) = N?pg = No?. Plugging this into equation
2 gives
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p(k|N) = —— e~ 27 (3)
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3 Bayesian Estimates of p

For k successes in N trials the posterior pdf for p is

m(p)dp o pF(1—p)N F(p)dp o b(p;k, N)I(p)dp

where I used the symbols 7 and II for the posterior and prior, respectively;
b(x; a,b) is the beta distribution defined for 0 < x < 1:
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where B(a,b) is the Beta function. It is often convenient to pick a beta prior
II(p) = b(p; a,b) which then yields a posterior!

| w(p)dp = b(p; k +a, N — k+1b) dp| (4)

Note (a,b) = (1,1) is a flat prior and (a,b) = (0.5,0.5) is the Jeffreys prior.
The beta prior for the binomial process is a “conjugate prior”, i.e., a prior that
yields a posterior of the same functional form. Then based on the posterior one
can construct credible intervals.

ISee for example https://tinyurl.com/3n9b222k


https://tinyurl.com/3n9b222k

3.1 Bayesian Gaussian Approximation

Given the gaussian limit derived in Section 2, it is not surprising that in the same
limiting case the posterior for p will be a gaussian. The factor in the exponent of
equation 3 is —(k — Np)?/(2Npq). Writing it in terms of the observed quantity
po = k/N and approximating p = pp and ¢ = (1 —p) = (1 — po) = qo, the
posterior with a flat prior becomes
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with 0'(2) = po(]g/N

We can get to the same result starting from the beta distribution of equation 4.

The mean and variance of b(z; o, ) are u = a/(a+ 3) and 02 = W,

respectively. (This can be shown easily from the integrals fol ab(z; a, B)dx
fol b(z;a + 1, 8)dz and fol 22b(x; a0, B)dz fol b(z; + 2, 8)dz and using the
normalization of the beta distribution in terms of the Beta function). With a

flat prior a = b =1, and for £k >> 1 and N —k >> 1, the posterior of equation 4
(k+1) ~ K (k+1)(N—k+1)

has mean Tt N—F ) ~ ~ = Po and variance TN 2 TN iTT]) ™
k(N —Fk . . .
% = &% — 8. The fact that the functional form of this posterior is also

gaussian can be shown going through a very similar procedure as was done in
Section 2. The algebra is a little different because the normalization factors are
not the same, i.e, (II\C[) =1/(N+1)B(k+1,N — k + 1)), see lemma A.1 of
https://projecteuclid.org/euclid.ejs/1472829397.

4 Frequentist Intervals, Clopper-Pearson

For k successes in N trials the two-sided central frequentist interval [pr,,py] at
a CL of « is given by solving

k

; <]i,)p2(1 —pr)¥ =%
LA . a
> <N>p31<1 )=

The interval can also be expressed in terms of the incomplete beta function
B(w;a,b) = [t 11 —t)P~1dt as

B(%;k,N—kH) < p < B(l—%;k+1,N—k)

There are software packages to calculate these intervals. Note that in a strict
frequentist sense the Clopper-Pearson intervals constructed this way are con-
servative, i.e., they overcover. This has to do with the quantized nature of the
observation (k is an integer).
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