
Binomial Distribution

Let p be the probability of success in a single trial and define q as q = 1 − p.
The probability of k successes in N trials is p(k|N) =

(
N
k

)
pkqN−k.

1 Mean and Variance

We use the trick that < x + y >=< x > + < y > and Var(x + y) = Var(x) +
Var(y) where x and y are independent random variables. We take the N trials
as N independent random variables xi with xi = 0 or 1 for failure or success,
so that < k >= N · < xi > and σ2 = Var(k) = N ·Var(xi). Then

< xi >= 0 · q + 1 · p = p → µ =< k >= Np

(not a surprise...). For the variance:

< x2i >= 02 · q + 12 · p = p

Var(xi) =< x2
i > − < xi >

2= p− p2 = p(1− p) = pq → σ2 = Npq

2 Gaussian limit

For large Np and large Nq the binomial distribution can be approximated as
a gaussian in the ”neighborhood” of the mean, i.e., for k not to different from
Np. We use Stirling formula X! ≈

√
2πXXXe−X to approximate

(
k
N

)
:

p(k|N) ≈ NNe−N
√

2πN

kke−k
√

2πk (N − k)N−keN−k
√

2π(N − k)
pkqN−k
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(
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k

)k (
Nq

N − k

)N−k
√

N

2πk(N − k)
(1)

Define a small δ = k −Np = Nq − (N − k). Then

log

(
Np

k

)
= − log

(
1 +

δ

Np

)
and log

(
Nq

N− k

)
= − log

(
1− δ

Nq

)
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Using the expansion log(1 + x) ≈ x− x2/2, after a bit of algebra we get

log

[(
Np

k

)k (
Nq

N − k

)N−k
]
≈ − δ2

2Npq
= − (k −Np)2

2Npq
= − (k − µ)2

2σ2

where µ = Np. Taking the exponent of the log and plugging it back into
equation 1:

p(k|N) ≈

√
N

2πk(N − k)
e−

(k−µ)2

2σ2 (2)

But k(N − k) = (δ +Np)(Nq− δ) ≈ N2pq = Nσ2. Plugging this into equation
2 gives

p(k|N) ≈ 1√
2πσ

e−
(k−µ)2

2σ2 (3)

3 Bayesian Estimates of p

For k successes in N trials the posterior pdf for p is

π(p)dp ∝ pk(1− p)N−kΠ(p)dp ∝ b(p; k,N)Π(p)dp

where I used the symbols π and Π for the posterior and prior, respectively;
b(x; a, b) is the beta distribution defined for 0 ≤ x ≤ 1:

b(x; a, b) =
1

B(a, b)
xa−1(1− x)b−1 =

Γ(a+ b)

Γ(a)Γ(b)
xa−1(1− x)b−1

where B(a, b) is the Beta function. It is often convenient to pick a beta prior
Π(p) = b(p; a, b) which then yields a posterior1

π(p)dp = b(p; k + a,N − k + b) dp (4)

Note (a, b) = (1, 1) is a flat prior and (a, b) = (0.5, 0.5) is the Jeffreys prior.
The beta prior for the binomial process is a “conjugate prior”, i.e., a prior that
yields a posterior of the same functional form. Then based on the posterior one
can construct credible intervals.

1See for example https://tinyurl.com/3n9b222k
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3.1 Bayesian Gaussian Approximation

Given the gaussian limit derived in Section 2, it is not surprising that in the same
limiting case the posterior for p will be a gaussian. The factor in the exponent of
equation 3 is −(k−Np)2/(2Npq). Writing it in terms of the observed quantity
p0 ≡ k/N and approximating p ≈ p0 and q = (1 − p) ≈ (1 − p0) ≡ q0, the
posterior with a flat prior becomes

π(p)dp ∝ e
− (p−p0)2

2σ20 dp

with σ2
0 = p0q0/N .

We can get to the same result starting from the beta distribution of equation 4.
The mean and variance of b(x;α, β) are µ = α/(α+β) and σ2 = αβ

(α+β)2(α+β+1) ,

respectively. (This can be shown easily from the integrals
∫ 1

0
xb(x;α, β)dx ∝∫ 1

0
b(x;α + 1, β)dx and

∫ 1

0
x2b(x;α, β)dx ∝

∫ 1

0
b(x;α + 2, β)dx and using the

normalization of the beta distribution in terms of the Beta function). With a
flat prior a = b = 1, and for k >> 1 and N−k >> 1, the posterior of equation 4

has mean (k+1)
(k+1+N−k+1) ≈

k
N = p0 and variance (k+1)(N−k+1)

(k+1+N−k+1)2(k+1+N−k+1+1) ≈
k(N−k)
N3 = p0q0

N = σ2
0 . The fact that the functional form of this posterior is also

gaussian can be shown going through a very similar procedure as was done in
Section 2. The algebra is a little different because the normalization factors are
not the same, i.e,

(
N
k

)
= 1/((N + 1)B(k + 1, N − k + 1)), see lemma A.1 of

https://projecteuclid.org/euclid.ejs/1472829397.

4 Frequentist Intervals, Clopper-Pearson

For k successes in N trials the two-sided central frequentist interval [pL, pH ] at
a CL of α is given by solving

k∑
i=0

(
i

N

)
piL(1− pL)N−i =

α

2

N∑
i=k

(
i

N

)
piH(1− pH)N−i =

α

2

The interval can also be expressed in terms of the incomplete beta function
B(x; a, b) =

∫ x
0
ta−1(1− t)b−1dt as

B(
α

2
; k,N − k + 1) < p < B(1− α

2
; k + 1, N − k)

There are software packages to calculate these intervals. Note that in a strict
frequentist sense the Clopper-Pearson intervals constructed this way are con-
servative, i.e., they overcover. This has to do with the quantized nature of the
observation (k is an integer).

3

https://projecteuclid.org/euclid.ejs/1472829397

