Poisson Limit, Frequentist vs Bayesian

Let $N_{0}=$ number of observed events μ_{90} the 90% limit. The Poisson distribution of mean μ is

$$
p(N \mid \mu)=\frac{\mu^{N} e^{-\mu}}{N!}
$$

The frequentist limit is given by solving for μ_{90} such that

$$
\begin{align*}
p\left(N \leq N_{0} \mid \mu_{90}\right) & =0.1 \\
\sum_{i=0}^{i=N_{0}} p\left(i \mid \mu_{90}\right) & =0.1 \\
e^{-\mu_{90}} \sum_{i=0}^{i=N_{0}} \frac{\mu^{i}}{i!} & =0.1 \tag{1}
\end{align*}
$$

The posterior distribution for a Poisson with uniform prior is

$$
p(\mu \mid N) d \mu=\frac{\mu^{N} e^{-\mu}}{N!} d \mu
$$

Note that this is properly normalized
$\int_{0}^{\infty} p(\mu \mid N) d \mu=\frac{1}{N!} \int_{0}^{\infty} \mu^{N} e^{-\mu} d \mu=\frac{1}{N!} \Gamma(N+1,0)=\frac{\Gamma(N+1)}{N!}=1$
where $\Gamma(a, b)$ is the upper incomplete gamma function. The 90% limit is then given by solving

$$
\begin{gather*}
\int_{\mu_{90}}^{\infty} p\left(\mu \mid N_{0}\right) d \mu=0.1 \\
\frac{1}{N_{0}!} \int_{\mu_{90}}^{\infty} \mu^{N_{0}} e^{-\mu} d \mu=0.1 \\
\frac{1}{N_{0}!} \Gamma\left(N_{0}+1, \mu_{90}\right)=0.1 \\
\frac{1}{N_{0}!} N_{0}!e^{-\mu_{90}} \sum_{i=0}^{i=N_{0}} \frac{\mu^{i}}{i!}=0.1 \tag{2}
\end{gather*}
$$

where I have used the expansion of $\Gamma(a, b)$ when a is a positive integer. The factorials cancel, and equations (1) and (2) are identical.

