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Srednicki 9.1. State and justify the symmetry factors in figure 9.13

~ ~
Swapping the sources is the same thing as swapping the ends of the propogator. So, we’ve
overcounted by two. S = 2.

You may be concerned because we didn’t count the sources when we did our counting.
So in what sense is this an overcounting? Remember that the source, whatever it is, will
just be its own collection of propogators and vertices. Whatever they are, these will be able
to be exchanged with each other, and this will be equivalent to swapping the ends of the
(drawn) propogator. So that’s the sense in which they are overcounted.

This may cause yet more consternation – if these bundles of propogators and vertices are
added, won’t they affect the symmetry factor? Yes – but that’s OK. When the sources are
specified, it will indeed become necessary to multiply our S with the S from each source.
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Swapping the vertices is the same as swapping the sources and reversing the two straight
propogators. That’s 2. Also, swapping the two curved propogators is the same as swapping
two legs in each propogator. That’s 2 more. S = 4.
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Swapping the sources is redundant as before, since swapping every other vertex and propoga-
tor except that in the middle is the same thing. That’s 2. Also, swapping the two vertices at
the top and bottom of the loop is the same as swapping across all the loop propogators across
the horizontal diagonally, and reversing the direction of the vertical propogator. That’s 2
more. S = 4.
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Swapping the sources is redundant as before, since swapping a bunch of vertices and pro-
pogators is the same thing. That’s 2. Also, swapping the two propogators in a loop is the
same as swaping the legs of those vertices. That’s 4 more, two for each loop. S = 8.
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Swapping the sources is redundant as before, since swapping a bunch of vertices and pro-
pogators is the same thing. That’s 2. Also, swapping the two propogators in the small loop
is the same as swaping the legs of those vertices. That’s 2 more. S = 4.~ ~
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Swapping the sources (in 3! different combinations) is the same as swapping the propogators
(in 3! different combinations). S = 6.

Why can’t we swap the legs of the vertex as before, and get another factor of 3!? Once
we eliminate the option to move the sources, the sources are no longer interchangeable. So
having a leg A matched to source A and propogator B is not the same thing as having leg
B matched to source A and propogator A.
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Swapping the sources (in 3! different combinations) is the same as swapping the straight
propogators (in 3! different combinations). S = 6.
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Swapping the curved propogators is the same is swapping the legs of those vertices. That’s
2. Additionally, swapping the straight horizontal propogators and sources is the same as
swapping the legs of the vertex. That’s 2 more. S = 4.
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Reversing the straight propogator in the middle in the same as reversing the vertices. That’s
2. Switching the two progagators on the left (or on the right) is the same as switching the
legs of the vertices. That’s 4. S = 8.
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Reversing the two left propogators and sources is the same as switching the vertices. That’s
2. Same on the right – that’s 2 more. Finally, switching the two on the left with the two on
the right is the same as switching those two vertices. That’s 2 more. S = 8.
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Reversing the two left propogators and sources is the same as switching the vertices. That’s
2. Same on the right – that’s 2 more. S = 4.
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Swapping the propagators in the loop is the same as switching the legs of the vertices. That’s
2. Swapping the vertices on the right (with their sources) is the same as switching the legs
of the vertices. That’s 2 more. S = 4.
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Swapping the propagators in the loop is the same as switching the legs of the vertices.
That’s 2. Swapping the vertices on the right (or the left) – with their sources – is the same
as switching the legs of the vertices. That’s 4 more. Finally, the entire diagram to the right
of the loop can be swapped with the entire diagram to the left of the loop – this is the same
as switching the vertices and reversing the propogators. That’s 2 more. S = 16.

Srednicki 9.2. Consider a real scalar field with the Lagrangian specified by:

L0 = −1

2
∂µφ∂µφ−

1

2
m2φ2

L1 = − 1

24
Zλλφ

4

Lct = −1

2
(Zφ − 1)∂µφ∂µφ−

1

2
(Zm − 1)m2φ2

(a) What kind of vertex appears in the diagrams for this theory (that is, how
many line segments does it join?) and what is the associated vertex factor?

The L1 terms specifies the interaction. The φ4 term indicates that the vertex joins four line

segments. The associated vertex factor is simply −iλ
∫
d4x . Why? The vertex factor is

everything in front of the vertex. We add a factor of 4! since the vertex legs can be arranged
in 4! ways. Finally, an i and

∫
d4x are added as in the text – this comes from the form of

equation 9.5. We’ll also neglect the Zg since Zg = 1 +O(g2) + . . ..

Srednicki’s solution neglects the integral. This is very poorly explained in the text, but
I think the best solution is to include the integral for chapter 9, and neglect it starting in
chapter 10. See my chapter 10 slides for an explanation of why we neglect this integral.

(b) Ignoring the counterterms, draw all the connected diagrams with 1 ≤ E ≤ 4
and 0 ≤ V ≤ 2, and find their symmetry factors.

Consider equation 9.11. This second term is Z0, which will not change. In the first term,
though, there will be four functional derivatives. Hence, the number of surviving sources
will be E = 2P − 4V .

For these diagrams then, anything with E odd won’t work, since that requires us to have
half a propogator. We also won’t have anything with E = 4, V = 0, since that corresponds
to two propogators, and there’s no way to combine two propogators without a vertex, so we
can’t have any connected diagrams. As for the others, we have:
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E = 2, V = 0 =⇒ P = 1.~ ~
S = 2

E = 2, V = 1 =⇒ P = 3.

~ m ~
S = 22

E = 4, V = 1 =⇒ P = 4.

~

~ ~

~�
�
�
�
�
�@

@
@
@
@
@

S = 4!

E = 2, V = 2 =⇒ P = 5.
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S = 23 S = 23 S = 2× 3!

E = 4, V = 2 =⇒ P = 6.
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S = 4! S = 24

(c) Explain why we did not have to include a counterterm linear in φ to cancel
tadpoles.

The counterterm linear in φ is needed to cancel those terms that have a single source,
with the source removed. In this case there are no terms with a single source, so this goes
to zero of its own accord.

Srednicki 9.3. Consider a complex scalar field (see problems 3.5, 5.1, and 8.7)
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with the Lagrangian specified by:

L0 = −∂µφ†∂µφ−m2φ†φ

L1 = −1

4
Zλλ(φ†φ)2

Lct = −(Zφ − 1)∂µφ†∂µφ− (Zm − 1)m2φ†φ

This theory has two kinds of sources, J and J†, and so we need a way to tell
which is which when we draw the diagrmas. Rather than labeling the source
blobs with a J or J†, we will indicate which is which by putting an arrow on the
attached propagator that points towards the source if it is a J†, and away from
the source if it is a J.

(a) What kind of vertex appears in the diagrams for this theory, and what
is the associated vertex factor? Hint: your answer should involve these arrows.

The vertex joins two lines with incoming arrows, and two with outgoing arrows. The vertex
factor is 2!2!× i

∫
d4x× (−1

4
)Zλλ = −iZλλ

∫
d4x =−iλ

∫
d4x+ . . ..

(b) Ignoring the counterterms, draw all the connected diagrams with 1≤ E ≤ 4
and 0 ≤ V ≤ 2, and find their symmetry factors. Hint: the arrows are important!

The diagrams are the same as last time, all we have to do is add the arrows and recal-
culate the symmetry factors.

E = 2, V = 0 =⇒ P = 1.~ - ~
S = 1

Note that S = 1 because the sources cannot be reversed in this theory: one source (with the
arrow pointing away from it) is a J and the other one is a J†. They are not interchangeable
with each other.

E = 2, V = 1 =⇒ P = 3.

~ m --

- ~
S = 1

E = 4, V = 1 =⇒ P = 4.
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S = 22

E = 2, V = 2 =⇒ P = 5.
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S = 1 S = 1 S = 2!

E = 4, V = 2 =⇒ P = 6.
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S = 2 S = 2

Srednicki 9.4. Consider the integral

exp W(g,J) =
1√
2π

∫ ∞
−∞

dx exp

[
−1

2
x2 +

1

6
gx3 + Jx

]
This integral does not converge, but it can be used to generate a joint power
series in g and J,

W(g,J) =
∞∑

V=0

∞∑
E=0

CV,EgVJE

(a) Show that

CV,E =
∑
I

1

SI

where the sum is over all connected Feynman diagrams with E sources and V
three-point vertices, and SI is the symmetry factor for each diagram.

We have:

exp W (g, J) =
1√
2π

∫ ∞
−∞

dx exp

[
−1

2
x2 +

1

6
gx3 + Jx

]
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Breaking up this exponential:

exp W (g, J) =
1√
2π

∫ ∞
−∞

dx e−
1
2
x2e

1
6
gx3eJx

Now we will expand these last two exponentials into series:

exp W (g, J) =
1√
2π

∫ ∞
−∞

dx e−
1
2
x2
∞∑
V=0

1

V !

[
1

6
gx3
]V ∞∑

E=0

1

E!
[Jx]E

which is:

exp W (g, J) =
1√
2π

∞∑
V=0

∞∑
E=0

JEgV

6V V !E!

∫ ∞
−∞

dx e−
1
2
x2x3V+E

This last function is odd (and integrates to zero) if 3V+E is odd. So, we will restrict the
sum to terms with 3V+E is even.

exp W (g, J) =
1√
2π

∞∑
V=0

∞∑
E=0

E+3V even

JEgV

6V V !E!

∫ ∞
−∞

dx e−
1
2
x2x3V+E

This integral appears on tables of integrals (actually, the integral shown usually ranges from
0 to ∞, but this is an even function, so multiply by two). The result is:

exp W (g, J) =
∞∑
V=0

∞∑
E=0

E+3V even

JEgV

6V V !E!
(3V + E − 1)!! (9.4.1)

Now we’ll switch to using diagrams. We’ll sum over all possible connected diagrams, and
give each diagram a factor of g for each vertex and of J for each external source. To account
for some diagrams that are included more than once in the sum, we’ll need to add in a multi-
plication factor, which will be, as in the text, 6V V !2PP ! divided by the symmetry factor SI .
Of course, there could still be cross-diagram contributions, which we’ll add in momentarily.

There’s one key point though. Under this prescription, we’re treating every possible com-
bination of vertex and propagator differently. In the text this was appropriate, because
the surviving source would depend on the combination, and would yield different diagrams
(though only the dummy indices would change). But in our case, which vertex gets paired
with which propagator is irrelevent, because we’ll still have the same diagram at the end
(even the dummy indices will be the same). Hence, the prescription above will overcount by

the number of vertex-propagator combinations – a factor of (2P )!
(2P−3V )!

. We need to divide this
out. Then,

exp W (g, J) =
∑
{I}

1

6V V !E!
(3V + E − 1)!!

6V V !2PP !(2P − 3V )!

(2P )!SI

Cancelling the obvious terms:

exp W (g, J) =
∑
{I}

1

E!
(3V + E − 1)!!

2PP !(2P − 3V )!

(2P )!SI
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Note that 3V + E = 2P , so:

exp W (g, J) =
∑
{I}

1

E!
(2P − 1)!!

2PP !(2P − 3V )!

(2P )!SI

Also, 2PP ! = (2P )!! Then,

exp W (g, J) =
∑
{I}

1

E!
(2P − 1)!!

(2P )!!(2P − 3V )!

(2P )!SI

From the definition of the double factorial, we have:

exp W (g, J) =
∑
{I}

(2P )!

E!

(2P − 3V )!

(2P )!SI

which gives:

exp W (g, J) =
∑
{I}

1

SI

Now we’re ready to add in the cross-diagram contributions, as promised. We start with the
assumption that exp W (g, J) is the sum of all general diagrams (in fact it isn’t really an
assumption as much as the whole idea of a series expansion), and follow the derivation of
equation 9.14. The result is:

exp W (g, J) = exp

∑
{I}

1

SI


which gives:

W (g, J) =
∑
{I}

1

SI

At this point we’re summing over all the connected diagrams and determining everything
from there. But we already know that we’re going to get a factor of gV and JE, the only
thing we actually need the diagram for is the symmetry factors. So let’s factor:

W (g, J) =
∞∑
V=0

∞∑
E=0

(∑
I

1

SI

)
gV JE

which is equation 9.29.

Note: I don’t know what the hell Srednicki’s solution is supposed to prove. He claims that
this “follows directly” from the phi-cubed theory, but that is obviously not true – the business
with the propagator-vertex pairing, for example, is new and needs to be treated carefully. He
also gives a downright incorrect explanation for why the propagator gets assigned a value of
one in the Feynman diagrams. Moreover, this problem is in itself merely a calculus problem,
and should be formulated completely independently of our QFT framework.

(b) Use equations 9.27 and 9.28 to compute CV,E for V ≤ 4 and E ≤ 5 Verify
that the symmetry factors given in figures 9.1-9.11 satisfy the sum rule of equa-
tion 9.29.
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We go back to equation (9.4.1) (these follow from equation 9.27 and 9.28, so it’s OK to
start here):

exp W (g, J) =
4∑

V=0

5∑
E=0

E+3V even

1

6V V !E!
(3V + E − 1)!!JEgV

We’ll just bang these out:

exp W (g, J) = 1 +

[
5

24
g2 +

385

1152
g4
]

+

[
1

2
g +

35

48
g3
]
J +

[
1

2
+

35

48
g2 +

5005

2304
g4
]
J2+

[
5

12
g +

385

288
g3
]
J3 +

[
1

8
+

35

64
g2 +

25025

9216
g4
]
J4 +

[
7

48
g +

1001

1152
g3
]
J4 + . . .

Hence,

W (g, J) = log

{
1 +

[
5

24
g2 +

385

1152
g4
]

+

[
1

2
g +

35

48
g3
]
J +

[
1

2
+

35

48
g2 +

5005

2304
g4
]
J2+

[
5

12
g +

385

288
g3
]
J3 +

[
1

8
+

35

64
g2 +

25025

9216
g4
]
J4 +

[
7

48
g +

1001

1152
g3
]
J5 + . . .

}
Now recall that log(1 + x) = x− 1

2
x2 + 1

3
x3 + . . .. Expanding this is easy on Mathematica:

W (g, J) =

(
5

24
g2 +

5

16
g4
)

+

(
1

2
g +

5

8
g3
)
J +

(
1

2
+

1

2
g2 +

25

16
g4
)
J2

+

(
1

6
g +

2

3
g3
)
J3 +

(
1

8
g2 + g4

)
J4 +

(
1

8
g3
)
J5 + . . . (9.4.2)

These clearly correspond to the symmetry factors presented in the textbook, according to
the relation found in part (a).

(c) Now consider W(g,J+Y), with Y fixed by the “no tadpole” condition

∂

∂J
W(g,J + Y)

∣∣∣∣
J=0

= 0

Then write

W(g,J + Y) =
∞∑

V=0

∞∑
E=0

C̃V,EgVJE

Show that

C̃V,E =
∑
I

1

SI

where the sum is over all connected Feynman diagrams with E sources and V
three-point vertices and no tadpoles, and SI is the symmetry factor of each dia-
gram.

There is nothing to show, Srednicki already proved this in the text. To summarize: we
want our vacuum expectation value to be zero, so the sum of all one-source drawings must
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be zero. This source can be replaced with any other diagram, and the sum will still be zero.
So, the counterterm forces the sum of the tadpoles to be zero. We enforce this in our expres-
sion by summing over everything except the tadpoles. We then repeat the argument of part
(a) – absolutely nothing changes except that our sum is over all diagrams excluding tadpoles.

(d) Let Y = a1g + a3g
3 + . . . and use equation 9.30 to determine a1 and a3. Com-

pute CV,E for V≤ 4 and E ≤ 4. Verify that the symmetry factors for the diagrams
in figure 9.13 satisfy the sum rule of part (c).

The condition is:
∂

∂J
W (g, J + Y )

∣∣∣∣
J=0

= 0

Taking the derivative, we arrive at:

1

2
g +

5

8
g3 +

(
1 + g2 +

50

16
g4
)(

a1g + a3g
3 + . . .

)
+

(
1

2
g + 2g2

)(
a1g + a3g

3 + . . .
)2

+

(
1

2
g2 + 4g4

)(
a1g + a3g

3
)3

+ . . .

The order g terms must be equal to zero, so:

1

2
g + a1g = 0 =⇒ a1 = −1

2

The order g3 terms must also be equal to zero, so:

5

8
g3 + a3g

3 + a1g
3 + a21

1

2
g3 = 0 =⇒ a3 = −1

4

Using equation (9.4.2) with J = J − 1
2
g − 1

4
g3, we have

W (g, J + Y ) =

(
5

24
g2 +

5

16
g4
)

+

(
1

2
g +

5

8
g3
)(

J − 1

2
g − 1

4
g3
)

+

(
1

2
+

1

2
g2 +

25

16
g4
)(

J − 1

2
g − 1

4
g3
)2

+

(
1

6
g +

2

3
g3
)(

J − 1

2
g − 1

4
g3
)3

+

(
1

8
g2 + g4

)(
J − 1

2
g − 1

4
g3
)4

+

(
1

8
g3
)(

J − 1

2
g − 1

4
g3
)5

+ . . .

Simplifying this on Mathematica is trivial, the result is:

W (g, J+Y ) =

(
1

12
g2 +

5

48
g4
)

+

(
1

2
+

1

4
g2 +

5

8
g4
)
J2+

(
1

6
g +

5

12
g3
)
J3+

(
1

8
g2 +

11

16
g4
)
J4+. . .

These clearly correspond to the symmetry factors presented in the textbook, according to
the relation found in part (c).

Srednicki 9.5. The interaction picture. In this problem, we will derive a for-
mula for 〈0|Tφ(xn) . . .φ(x1)|0〉 without using path integrals. Suppose we have
a Hamiltonian density H = H0 +H1, where H0 = 1

2
Π2 + 1

2
(∇φ)2 + 1

2
m2φ2, and H1
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is a function of Π(x,0) and φ(x,0) and their spatial derivatives. (It should be
chosen to preserve Lorentz invariance, but we will not be concerned with this
issue.) We will add a constant to H so that H|0〉 = 0. Let ∅ be the ground state
of H0, with a constant added to H0 so that H0|∅〉 = 0. (H1 is then defined as H -
H0). The Heisenberg-picture field is:

φ(x, t) = eiHtφ(x,0)e−iHt

We now define the interaction picture field

φI(x, t) = eiH0tφ(x,0)e−iH0t

(a) Show that φI(x) obeys the Klein-Gordon equation and hence is a free field.

We have:
φI = eiH0tφSe

−iH0t

where we define φS = φ(x, 0). Now we use Campbell-Baker-Hausdorff, and achieve:

φI = φS + [H0t, φS] +
1

2!
[H0t, [H0t, φS]] +

1

3!
[H0t, [H0t, [H0t, φS]]] + . . .

which is:

φI = φS + t[H0, φS] +
1

2!
t2[H0, [H0, φS]] +

1

3!
t3[H0, [H0, [H0, φS]]] + . . . (9.5.1)

Now we use Srednicki 3.30:

H0 =

∫
d̃kωa†(k)a(k)

with ω defined in the usual way (ω =
√
k2 +m2). Just for future reference, let’s do one

calculation:

[H0, a(k)] =

∫
d̃k′ω(k′)

[
a†(k′)a(k′), a(k)

]
[H0, a(k)] =

∫
d̃k′iω(k′)a(k′)(2π)3(2ω)δ3(k − k′)

[H0, a(k)] = −iω(k)a(k)

Since they are at equal times,
[H0, a(k)] = −iωa(k)

Similarly,
[H0, a

†(k)] = iωa†(k)

Now we’re ready to evaluate:

[H0, φS] =

∫
d̃k
[
H0, a(k)eik·x + a†(k)e−ik·x

]
Note that there is no time-dependence here, since t = 0.

[H0, φS] =

∫
d̃k
(
[H0, a(k)] eik·x +

[
H0, a

†(k)
]
e−ik·x

)
12



[H0, φS] =

∫
d̃k
(
−iωa(k)eik·x + iωa†(k)e−ik·x

)
Now plugging into equation (9.5.1), we have:

φI =

∫
d̃k
[
eik·xe−iωta(k) + e−ik·xeiωta†(k)

]
φI =

∫
d̃k
[
eikxa(k) + e−ikxa†(k)

]
Taking the spatial and temporal derivatives, and remembering that kx = −ωt + k · x, we
find that:

(−∂2 +m2)φI = 0

which is the Klein-Gordon equation.

Note: Our fundamental axiom of quantum field theory is that bosons follow the Klein-Gordon
equation. Assuming that our boson operator φ can be written in the form indicated, it is not
necessary to do any math to show that the K-G equation is followed (the math will at some
level hinge on the axiom, and the argument will therefore be circular). In this case, all the
math was necessary merely to demonstrate that Srednicki’s proposed interaction-picture op-
erator is equivalent to the Schrödinger-operator usually used.

Nonetheless, this is a useful demonstration of the Campbell-Baker-Hausdorff theorem, and
Srednicki’s non-answer in the solution is a disappointing failure to address an interesting
problem.

(b) Show that φ(x, t) = U†(t)φI(x)U(t), where U(t) = eiH0te−iHt.

From equation 9.33,
φ(x, t) = eiHtφ(x, 0)e−iHt

Next, invert equation 9.34 to solve for φ(x, 0) and insert the result:

φ(x, t) = eiHte−iH0tφI(x, t)e
iH0te−iHt

which is
φ(x, t) = U †(t)φI(x)U(t)

where U(t) = eiH0te−iHt

(c) Show that U(t)obeys the differential equation i d
dt

U(t) = HI(t)U(t), where
HI(t) = eiH0tH1e

−iH0t is the interaction hamiltonian in the interaction picture,
and the boundary condition U(0) = 1.

We have:

i
d

dt
U(t) = i

d

dt
eiH0te−iHt

i
d

dt
U(t) =

(
eiH0t(H)e−iHt − (H0)e

iH0te−iHt
)

i
d

dt
U(t) = eiH0t ((H)− (H0)) e

−iHt
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i
d

dt
U(t) = eiH0tH1e

−iHt

i
d

dt
U(t) = eiH0tH1e

−iH0teiH0te−iHt

i
d

dt
U(t) = HIU(t)

The boundary condition is obviously satisfied, since e0 = 1.

(d) If H1 is specified by a particular function of the Schrödinger-picture fields
Π(x,0) and φ(x,0), show thatHI(t) is given by the same function of the interaction-
picture fields ΠI(x, t) and φI(x, t).

Whatever this function is, it can be expanded like this:

HI =
∞∑
i=0

∞∑
j=0

Ci,jΠ(x)iφ(x)j

Time-evolving these states:

HI(t) =
∞∑
i=0

∞∑
j=0

Ci,je
iH0tΠ(x)iφ(x)je−iH0t

Now we just insert i+ j copies of the identity eiH0te−iH0t. Then,

HI(t) =
∞∑
i=0

∞∑
j=0

Ci,jΠ(x, t)iφ(x, t)j

(e) Show that, for t ≥ 0.

U(t) = T exp

[
−i

∫ t

0

dt′HI(t
′)

]
obeys the differential equation and boundary condition of part (c). What is the
comparable expression for t ≤ 0? You may need to define a new ordering symbol.

This is trivial: simply take the derivative, apply the time-ordering symbol, and the dif-
ferential equation is immediately satisfied. The boundary condition is also immediately
satisfied. If you’re concerned about how to take the derivative with respect to a variable
specified only in the limits of integration, you should review the Fundamental Theorem of
Calculus.

The time-ordering symbol may seem unnecessary, but remember that the integral can be
split up into the sum of many smaller integrals, which then become a product of many expo-
nentials. The derivative would act only on one exponential, so the −iHI from the derivative
could go anywhere. Only the time-ordering symbol can restore order.

As for t ≤ 0, the issue is that time t will now be the earliest t, but the differential equation
requires the −iHI resulting from the derivative to be at the left of the equation. So, the

14



expression will be the same as in eq. 9.35 for t ≤ 0, but the time-ordering operator T must
be replaced by an anti-time-ordering operator.

(f) Define U(t2, t1) = U(t2)U†(t1). Show that, for t2 > t1,

U(t2, t1) = T exp

[
−i

∫ t2

t1

dt′HI(t
′)

]
What is the comparable expression for t1 ≥ t2?

By definition:

U(t2) = T exp

[
−i
∫ t2

0

dt′HI(t
′)

]
U(t1) = T exp

[
−i
∫ t1

0

dt′HI(t
′)

]
Now we need to take the Hermitian conjugate of the second term. Recall that (AB)† = B†A†,
ie the time-ordering is reversed. Then

U(t2, t1) = T exp

[
−i
∫ t2

0

dt′HI(t
′)

]
T exp

[
i

∫ t1

0

dt′HI(t
′)

]
Let’s divide this first term:

U(t2, t1) = T exp

[
−i
∫ t2

t1

dt′HI(t
′)

]
exp

[
−i
∫ t1

0

dt′HI(t
′)

]
T exp

[
i

∫ t1

0

dt′HI(t
′)

]
(9.5.2)

These last two terms cancel out. To do this in a formally correct way, let me separate out
these last two terms:

T exp

[
−i
∫ t1

0

dt′HI(t
′)

]
T exp

[
i

∫ t1

0

dt′HI(t
′)

]
And expanding:

T exp

[
−i
∫ t1

δ

dt′HI(t
′)

]
exp

[
−i
∫ δ

0

dt′HI(t
′)

]
T exp

[
i

∫ δ

0

dt′HI(t
′)

]
exp

[
i

∫ t1

δ

dt′HI(t
′)

]
Now these middle terms cancel. These last two equations combined therefore show:

T exp

[
−i
∫ t1

0

dt′HI(t
′)

]
T exp

[
i

∫ t1

0

dt′HI(t
′)

]
= T exp

[
−i
∫ t1

δ

dt′HI(t
′)

]
T exp

[
i

∫ t1

δ

dt′HI(t
′)

]
Repeating this an infinite number of times, the right hand side will eventually reach zero.
Hence, equation (9.5.2) becomes:

U(t2, t1) = T exp

[
−i
∫ t2

t1

dt′HI(t
′)

]
As expected. As for the comparable expression for t1 > t2, we use the same setup. Note
that both t1 and t2 can be defined to be positive, so the only thing that changes is how we
divide the integral. The analog to equation (9.5.2) is:

U(t2, t1) = T exp

[
−i
∫ t2

0

dt′HI(t
′)

]
T exp

[
i

∫ t2

0

dt′HI(t
′)

]
exp

[
i

∫ t1

t2

dt′HI(t
′)

]
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So the result is the same except with the anti-time-ordering operator rather than the time-
ordering operator.

(g) For any time ordering, show that U(t3, t1) = U(t3, t2)U(t2, t1) and that U†(t1, t2)
= U(t2, t1).

By definition:
U †(t1, t2) = U(t2)U

†(t1)

which is:
U †(t1, t2) = U(t2, t1)

Again by definition:
U(t3, t1) = U(t3)U

†(t1)

By the definition of the unitary operator, we can insert an identity:

U(t3, t1) = U(t3)U
†(t2)U(t2)U

†(t1)

U(t3, t1) = U(t3, t2)U(t2, t1)

It is of course also possible to do this proof using the method of part (f), but that must
be repeated for the different permutations of time-ordering.

(h) Show that

φ(xn) . . .φ(x1) = U†(tn,0)φI(xn)U(tn, tn−1)φI(xn−1) . . .U(t2, t1)φI(x1)U(t1,0)

Let’s consider the right hand side:

U †(tn, 0)φI(xn)U(tn, tn−1)φI(xn−1) . . . U(t2, t1)φI(x1)U(t1, 0)

Using the second equality in part (g):

=⇒ U(0, tn)φI(xn)U(tn, tn−1)φI(xn−1) . . . U(t2, t1)φI(x1)U(t1, 0)

We’ve shown that U(0) = 0, so:

=⇒ U †(tn)φI(xn)U(tn)U †(tn−1)φI(xn−1) . . . U(t2)U
†(t1)φI(x1)U(t1)

Using the result of part (b) gives

=⇒ φ(xn) . . . φ(x1)

as expected. Was it OK that we used the results of part (b)? We’ve shown that the U of part
(b) obeys the same differential equation with the same boundary conditions as the U of part
(e). It turns out that ordinary differential equations have unique solutions when the function
(HI(t)U(t), in our case) and its partial derivative (wrt t, in our case) are continuous. Hence,
yes, the all the U(t)’s in this problem are equal.

16



(i) Show that U†(tn,0) = U†(∞,0)U(∞, tn) and also that U(t1,0) = U(t1,−∞)U(−∞,0).

This is just an application of part (g). Don’t be concerned about the infinities: the uni-
tary operators still work the same way, and are still defined since U(t) will have an improper
(infinite) integral, which is well-defined for any reasonable boundary condition.

(j) Replace H0 with (1− iε)H0, and show that 〈0|U†(∞,0) = 〈0|∅〉〈∅| and that
U(−∞,0)|0〉 = |∅〉〈∅|0〉.

We have:
U(−∞, 0)|0〉 = U(−∞)U †(0)|0〉

U(0) = 1, so:
U(−∞, 0)|0〉 = U(−∞)|0〉

Using the results of part b:

U(−∞, 0)|0〉 = e−iH0∞eiH∞|0〉

Replacing H0 with (1− iε)H0 as instructed:

U(−∞, 0)|0〉 = e−i(1−iε)H0∞eiH∞|0〉

The terms of the form eix|0〉 = |0〉, because time-evolving the vacuum doesn’t do anything.
Hence,

U(−∞, 0)|0〉 = e−i(1−iε)H0∞|0〉
Now the problem is that |0〉 is an eigenstate of the H operator, but we’re dealing with the
H0 operator. Let’s switch |0〉 to the H0 eigenstate basis. Then:

U(−∞, 0)|0〉 =
∑
n

e−i(1−iε)H0∞|n〉〈n|0〉

All the states except the vacuum are now multiplied by a factor of e−∞, and go to zero (for
any ε > 0, even a tiny one). Then,

U(−∞, 0)|0〉 = e−i(1−iε)H0∞|∅〉〈∅|0〉

The vacuum is completely unperturbed by the exponential, because time-evolving the vac-
uum doesn’t do much. So,

U(−∞, 0)|0〉 = |∅〉〈∅|0〉
as expected. Taking the Hermitian conjugate of this gives the other equality expected.

(k) Show that

〈0|φ(xn) . . .φ(x1)|0〉 = 〈∅|U(∞, tn)φI(xn)U(tn, tn−1)φI(xn−1)

. . .U(t2, t1)φI(x1)U(t1,−∞)|∅〉 × |〈∅|0〉|2

We use the result from part (h):

φ(xn) . . . φ(x1) = U †(tn, 0)φI(xn)U(tn, tn−1)φI(xn−1) . . . U(t2, t1)φI(x1)U(t1, 0)
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Inserting the vacuum bra and ket:

〈0|φ(xn) . . . φ(x1)|0〉 = 〈0|U †(tn, 0)φI(xn)U(tn, tn−1)φI(xn−1) . . . U(t2, t1)φI(x1)U(t1, 0)|0〉

Now we use the result of part (i):

〈0|φ(xn) . . . φ(x1)|0〉 = 〈0|U †(∞, 0)U(∞, tn)φI(xn)U(tn, tn−1)φI(xn−1)

. . . U(t2, t1)φI(x1)U(t1,−∞)U(−∞, 0)|0〉

And finally, use the result of part (j):

〈0|φ(xn) . . . φ(x1)|0〉 = 〈∅|U(∞, tn)φI(xn)U(tn, tn−1)φI(xn−1)

. . . U(t2, t1)φI(x1)U(t1,−∞)|∅〉 × |〈0|∅〉|2

(l) Show that

〈0|Tφ(xn) . . .φ(x1)|0〉 = 〈∅|TφI(xn) . . .φI(x1)e−i
∫
d4xHI(x)|∅〉 × |〈∅|0〉|2

We simply insert the time-ordering operator into the result of part (k). All the terms in
the middle are of the form U †(ti)φ(xi)U(ti): since these are all at equal time, the unitary
operators don’t do anything, and can be neglected. The result is:

〈0|T φ(xn) . . . φ(x1)|0〉 = 〈∅|T U(∞)φI(xn) . . . φI(x1)U
†(−∞)|∅〉 × |〈∅|0〉|2

Now the time-ordering operator is still there, so we can write the remaining terms in whatever
order we want – they’ll be returned to their proper places by the T operator. We choose
to move the first unitary operator to be near the second unitary operator. This gives the
desired result:

〈0|Tφ(xn) . . . φ(x1)|0〉 = 〈∅|TφI(xn) . . . φI(x1)e
−i

∫
d4xHI(x)|∅〉 × |〈∅|0〉|2

(m) Show that

|〈∅|0〉|2 = 1/〈∅|Te−i
∫
d4xHi(x)|∅〉

Thus we have

〈0|Tφ(xn) . . .φ(x1)|0〉 =
〈∅|TφI(xn) . . .φI(x1)e−i

∫
d4xHI(x)|∅〉

〈∅|Te−i
∫
d4xHI(x)|∅〉

We can now Taylor expand the exponentials on the right-hand side of equation
9.41, and use free-field theory to compute the resulting correlations functions.

This follows from part (l), simply set φi = 1, and remember that 〈0|0〉 = 1.
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