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Srednicki 70.1. Verify equation 70.10.

The discussion directly after equation 70.9 is:

T aRT
a
R = C(R)δaa (70.1.1)

Taking the trace:
Tr(T aRT

a
R) = C(R)Tr(δaa)

Now equation (70.1.1) tells us that that δ function must have the same dimensionality as
the representation, ie D(R). Thus:

Tr(T aRT
a
R) = C(R)D(R)

Now let’s use equation 70.9:
T (R)Tr(δab) = C(R)D(R)

Now consider equation 70.9: we’re summing over the as, ie over the number of generators,
ie from 1 to D(A). The trace of this must therefore be D(A). This gives:

T (R)D(A) = C(R)D(R)

Srednicki 70.2. (a) Use equations 70.12 and 70.26 to compute T(A) for SU(N)

We use equation 70.12:
T (N ⊗N) = T (1⊕ A)

Now we use 70.12:
T (N ⊕N) = T (1) + T (A)

Next comes 70.15:
T (N)D(N) + T (N)D(N) = T (1) + T (A)

The dimensionality of N (or N) is obviously just N, so:

T (N)N + T (N)N = T (1) + T (A)

It is stated below equation 70.10 that T (N) = T (N) = 1
2

for SU(N), so:

N = T (1) + T (A)
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Now T(1) is the index for a one-dimensional representation, which has no commutation
relations. Therefore T (1) = 0, and:

T (A) = N

(b) For SU(2), the adjoint representation is specified by (TA)bc = −iεabc. Use
this to compute T (A) explicitly for SU(2). Does your result agree with part (a)?

We have, using 70.9:
Tr

[
(T aA)cd(T bA)de

]
= T (A)δab

Using the adjoint representation given in the problem:

Tr
[
−εacdεbde

]
= T (A)δab

Now we multiply by δab:
Tr

[
εadcεade

]
= T (A)δaa

Now a is on both sides, so it is fixed once and for all. The other two can go sequentially or
anti-sequentially from the first; the results will be (1)2 or (−1)2 respectively, and so:

Tr [2] = T (A)

where the delta function on the right hand side is gone, since the one value of a will always
equal itself. Then:

T (A) = 2

(c) Consider the SU(2) subgroup of SU(N) that acts on the first two components
of the fundamental representation of SU(N). Under this SU(2) subgroup, the N
of SU(N) transforms as 2⊕ (N − 2)1s. Using equation 70.26, figure out how the
adjoint representation of SU(N) transforms under this SU(2) subgroup.

As instructed, we use equation 70.26:

N ⊗N = 1⊕ A

Now we transform N:

[2⊕ (N − 2)1S]⊗ [2⊕ (N − 2)1s] = 1⊕ A

This gives:

(2⊗ 2)⊕ [(N − 2)1S ⊗ 2]⊕ [2⊗ (N − 2)1S]⊕ (N − 2)2(1S ⊗ 1s) = 1⊕ A (70.2.1)

which gives:
(3⊕ 1)⊕ (2N − 4)2S ⊕ (N − 2)21S = 1⊕ A

Thus:
A = 3⊕ (2N − 4)2S ⊕ (N − 2)21S

(d) Use your results from parts (b) and (c) to compute T(A) for SU(N). Does
your result agree with part (a)?
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We use the result from part (c):

T (A) = T (3) + (2N − 4)T (2S) + (N − 2)2T (1S)

Now 2 ⊗ 2 = 1 + 3S, where 3 is the adjoint representation. Thus T(3) = T(A) = 3 in
SU(2). Further, T(1) is 0, because a one-dimensional matrix does not have any commutation
relations. Finally, T(2) we know from 70.6 is 1/2. Thus:

T (A) = 2 + (2N − 4)
1

2
+ (N − 2)20

Thus:
T (A) = N

which is the result from part (a).

Srednicki 70.3. (a) Consider the SO(3) subgroup of SO(N) that acts on the
first three components of the fundamental representations of SO(N). Under this
SO(3) subgroup, the N of SO(N) transforms as 3⊕ (N − 3)1s. Using equation
70.29, work out how the adjoint representation of SO(N) transforms under this
SO(3) subgroup.

We use equation 70.29:
N ⊗N = 1S ⊕ AA ⊕ SS

Now we transform N:

[3⊕ (N − 3)1s]⊗ [3⊕ (N − 3)1s] = 1S ⊕ AA ⊕ SS

This gives:

(3⊗ 3)⊕ (N − 3)(3⊗ 1S)⊕ (N − 3)(1S ⊗ 3)⊕ (N − 3)21s = 1S ⊕ AA ⊕ SS

To evaluate these group multiplication elements, we use Young Tableaux, as described in
Sakurai section 6.5. For 3⊗ 3, we have:

3⊗ 3 = ⊕

where this first term has 0 0 , 0 1 , 0 2 , 1 1 , 1 2 , 2 2 , and the second term has:

0
1

, 0
2

, 1
2

. This means that 3⊗ 3 = 6S ⊕ 3A.

Similarly, we get 3⊗ 1 = 2S + 1A. Now we drop the symmetric terms and we have:

3A ⊕ (N − 3)2A ⊕ (N − 3)1A = A

This gives:
A = (N − 3)3A ⊕ (1)3A
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And so:
A = (N − 2)3A

(b) Use the resuts from part (a) and from problem 70.2 to compute T(A) for
SO(N).

We use the result from part (a):

T (A) = (N − 2)T (3A)

We found in problem 70.2 that T(3) = 2. Then:

T (A) = 2N − 4

Srednicki 70.4. (a) For SU(N), we have:

N ⊗N = AA + SS

where A corresponds to a field with two antisymetric fundamental SU(N) in-
dices φij = −φji, and S corresponds to a field with two symmetric fundamental
SU(N) indices φij = φji. Compute D(A) and D(S).

This is just a matter of degrees of freedom (D represents the dimension, ie the number
of generators, ie the number of degrees of freedom). An NxN matrix that is symmetric has
(N2 +N)/2 degrees of freedom, (half the non-diagonal elements, and the diagonal) while the
antisymmetric matrix has (N2 −N)/2 degrees of freedom (half the non-diagonal elements).
Thus, we have:

D(A) =
1

2
(N2 −N)

D(S) =
1

2
(N2 +N)

(b) By considering an SU(2) subgroup of SU(N), compute T(A) and T(S).

Using equation (70.2.1) from problem 70.2, we have:

(2⊗ 2)⊕ [(N − 2)1S ⊗ 2]⊕ [2⊗ (N − 2)1S]⊕ (N − 2)2(1S ⊗ 1s) = 1⊕ A

Using the equation in the problem statement, we have:

(2⊗ 2)⊕ [(N − 2)1S ⊗ 2]⊕ [2⊗ (N − 2)1S]⊕ (N − 2)2(1S ⊗ 1s) = 1⊕ AA + SS

Now we take the anti-symmetric component of this.

1A ⊕ (N − 2)2S = AA

And the symmetric component:

3S ⊕ (N − 2)2S ⊕ (N − 2)21S = SS ⊕ 1 (70.2.2)
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Now we take the index of both sides:

T (A) = T (1A)⊕ (N − 2)T (2S)

Now we know 1A is invariant, and T (2S) = 1
2
. Then:

T (A) =
1

2
(N − 2)

Similarly, we take the index on equation (70.2.2):

T (S) + T (1) = T (3S)⊕ (N − 2)T (2S)⊕ (N − 2)2T (1S)

Again, we have T (2) = 1
2

and T (1) = 0. We also found in problem 70.2(d) that T (3) = 2.
Then:

T (S) = 2 +
1

2
(N − 2)

which is:

T (S) =
1

2
(N + 2)

(c) For SU(3), show that A = 3.

We summarize the desired properties with:

φij = εijkφ
k

This is the representation for an antisymmetric triplet.

(d) By considering an SU(3) subgroup of SU(N), compute A(A) and A(S).

We begin with:
AA + SS = N ⊗N

From the statement of problem 70.3, we transform the SU(3) component of SU(N) such that:

AA + SS = [3⊕ (N − 3)1s]⊗ [3⊕ (N − 3)1S]

Distributing:

AA + SS = [3⊗ 3]⊕ [3⊗ (N − 3)1s]⊕ [(N − 3)1S ⊗ 3]⊕ (N − 3)2[1S ⊗ 1S] (70.2.3)

Taking the anti-symmetric components of this:

A = 3 + (N − 3)3S

Now we take the anomaly coefficient such that:

A(A) = A(3) + (N − 3)A(3)

using the discussion at the bottom of equation 427, we have:

A(A) = −1 + (N − 3) · 1
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which is:
A(A) = N − 4

Now we use equation (70.2.3):

S = 6 + (N − 3)3 + (N − 3)21

Taking the anomaly coefficient:

A(S) = A(6) + (N − 3)A(3) + (N − 3)2A(1)

Now A(3) = 1 and A(1) = 0, and so:

A(S) = A(6) + (N − 3) (70.2.4)

Now we just need A(6). We have from equation 70.36:

A(3⊗ 3) = A(3)D(3) +D(3)A(3)

which is:
A(6⊕ 3) = 1 · 3 + 3 · 1

where A(3) is the same as before, and D(3) is given on page 426. Now we use 70.35 again:

A(6) + A(3) = 6

Which gives:
A(6) = 7

Putting this into equation (70.2.4):

A(S) = N + 4

Note: Are you confused about why [3⊗ (N − 3)1] + [(N − 3)1⊗ 3] is half symmetric and half
anti-symmetric? So am I! It’s clearly true – consider the SU(3) component of SU(4) – but
I can’t seem to prove it. In fact, I’m really very frustrated about this kind of ambiguity and
the lack of clear examples in this section in the text. It would be very helpful to include a
brute-force calculation with several possible representations for one group like SU(3). Per-
haps I will write an extra supplement on this topic after I understand it better.

Srednicki 70.5. Consider a field φi in the representation R1 and a field χI in the
representation R2. Their product φiXI is then in the direct product represen-
tation R1⊗R2, with generator matrices given by equation 70.13.

(a) Prove the distribution rule for the covariant derivative,

[Dµ(φχ)]iI = (Dµφ)iχI + φi(Dµχ)I

I hate this notation, because the indices are very ambiguous. What’s really going on is that
the covariant derivative (D) has two indices, and the fields have one each. This is a little
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opaque because the fields are in different representations, and so cannot be directly multi-
plied. As a result, the covariant derivative really has four indices, two in each reprentation.
I find it less confusing (though a little misleading) to write the index directly on the fields,
and leave the covariant derivative’s indices implied (I say misleading just because the written
index will actually contract with the index on the covariant derivative).

In any case, the discussion on page 420 and the partial derivatives give:

Dµ(φiχI) = ∂µ(φiχI)− igAaµ(T aR1⊕R2
)iI,jJφjχJ

Using the product rule and equation 70.13:

Dµ(φiχI) = φi∂µχI + (∂µφi)χI − igAaµ(T aR1)ijδIJφjχJ − igAaµδij(T aR2)IJφjχJ

Using the delta functions and reordering:

Dµ(φiχI) = φi
[
∂µχI − igAaµ(T aR2)IJχJ

]
+
[
∂µφi − igAaµ(T aR1)ijφj

]
χI

which is:
Dµ(φiχI) = φi(DµχI) + (DµφI)χI

(b) Consider a field φi in the complex representation R. Show that

∂µ(φ†iφi) = (Dµφ
†)iφi + φ†i(DµφI)

We have on page 424 that φ†iφi is invariant, ie a singlet, ie that T a1 = 0. Thus, the partial
and covariant derivatives are equivalent, and our result from part (a) gives us the desired
result.

Srednicki 70.6. The field strength in Yang-Mills theory is in the adjoint rep-
resentation, and so its covariant derivative is:

(DρFµν)
a = ∂ρF

a
µν − igAc

ρ(T
c
A)abF bµν

Prove the Bianchi Identity :

(DµFνρ)
a + (DνFρµ)a + (DρFµν)

a = 0

We use the definition of the covariant derivative:

(∂µFνρ)
a + (∂νFρµ)a + (∂ρFµν)

a − igAcµ(T cA)abF b
νρ − igAcν(T cA)abF b

ρµ − igAcρ(T cA)abF b
µν = 0

Now we use equation 70.3, which shows that (T aA)bc = −ifabc:

(∂µFνρ)
a + (∂νFρµ)a + (∂ρFµν)

a − gAcµf cabF b
νρ − gAcνf cabF b

ρµ − gAcρf cabF b
µν = 0

Next we use equation 69.22 to expand the field strength:

∂µ∂νA
a
ρ − ∂µ∂ρAaν + gfdea∂µ(AdνA

e
ρ) + ∂ν∂ρA

a
µ − ∂ν∂µAaρ + gfdea∂ν(A

d
ρA

e
µ)
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∂ρ∂µA
a
ν − ∂ρ∂νAaµ − ∂ρ∂νAaµ + gfdea∂ρ(A

d
µA

e
ν)− gAcµf cab

[
∂νA

b
ρ − ∂ρAbν + gfdebAdνA

e
ρ

]
−gAcνf cab

[
∂ρA

b
µ − ∂µAbρ + gfdebAdρA

e
µ

]
− gAcρf cab

[
∂µA

b
ν − ∂νAbµ + gfdebAdµA

e
ν

]
= 0

Now we use the commutativity of partial derivatives to cancel the first and fifth terms the
second and seventh, and the fourth and eighth. We further use the product rule, and reorder
some terms:

gfdea
[
Adν(∂µA

e
ρ) + (∂µA

d
ν)A

e
ρ + Adρ(∂νA

e
µ) + (∂νA

d
ρ)A

e
µ + Adµ(∂ρA

e
ν) + (∂ρA

d
µ)Aeν − Aeµ(∂νA

d
ρ)

+Aeµ(∂ρA
d
ν)− Aeν(∂ρAdµ) + Aeν(∂µA

d
ρ)− Aeρ(∂µAdν) + Aeρ(∂νA

d
µ)
]
− g2f cabfdeb

[
AcµA

d
νA

e
ρ+

AcνA
d
ρA

e
µ + AcρA

d
µA

e
ν

]
= 0

The second and eleventh terms cancel, so do the fourth and seventh, as well as the sixth and
ninth. Further, we do lots of distributing. This gives:

g
[
fdeaAdν(∂µA

e
ρ) + fdeaAdρ(∂νA

e
µ) + fdeaAdµ(∂ρA

e
ν) + fdeaAeµ(∂ρA

d
ν) + fdeaAeν(∂µA

d
ρ) + fdeaAeρ(∂νA

d
µ)
]

−g2
[
f cabfdebAcµA

d
νA

e
ρ + f cabfdebAeµA

c
νA

d
ρ + f cabfdebAdµA

e
νA

c
ρ

]
= 0

Now we take in the first part d, e → b, c just for convenience. We further change a few of
the dummy indices to promote factoring or cancellation. We also divide by g:

f bcaAbν(∂µA
c
ρ)+f cbaAbν(∂µA

c
ρ)+f bcaAbρ(∂νA

c
µ)+f cbaAbρ(∂νA

c
µ)+f bcaAbµ(∂ρA

c
ν)+f cbaAbµ(∂ρA

c
ν)

−gAcµAdνAeρ
[
f cabfdeb + fdabf ecb + f eabf cdb

]
= 0

Now we use the antisymmetry of f to cancel these first terms. We further divide by -g. This
gives:

AcµA
d
νA

e
ρ

[
facbf bed + fadbf bce + f eabf cdb

]
= 0

Just for our sanity, let’s change these indices to Srednicki’s notation: (c→ b, b→ d, e→ c,
d→ e). This gives:

AbµA
e
νA

c
ρ

[
fabdfdce + faedfdbc + f cadf bed

]
= 0

Now we use the antisymmetry of f :

AbµA
e
νA

c
ρ

[
fabdfdce + f bcdfdae + f cadfdbe

]
= 0

which vanishes by the Jacobi Identity, proving the Bianchi Identity.
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