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Srednicki 7.1. Starting with equation 7.12, do the contour integral to verify
equation 7.14

Equation 7.12 is:

G(t− t′) =
1

2π

∫ ∞
−∞

dE
e−iE(t−t′)

−E2 + ω2 − iε
Now we can write this as:

G(t− t′) = − 1

2π

∫ ∞
−∞

dEe−iE(t−t′) 1

E2 − (ω2 − iε)

Hence:

G(t− t′) = − 1

4π
√
ω2 − iε

∫ ∞
−∞

dEe−iE(t−t′)
[

1

E −
√
ω2 − iε

− 1

E +
√
ω2 − iε

]
(7.1.1)

Now let’s assume that t − t′ ≥ 0. In this case, an integral over a semi-circle the lower half-
plane will go to zero, since the exponential factor will have a term of (-i) as written, a term
proportional to (-i) from the circle in the lower half-plane, and a positive term from the (t -
t’). The result is e−positive real number * mod(E) which will go to zero as |E| → ∞. As a result, we
can tack on the integral over the semi-circle (since it equals zero), ending up with a contour
integral:

G(t− t′) = − 1

4π
√
ω2 − iε

∫
C

dEe−iE(t−t′)
[

1

E −
√
ω2 − iε

− 1

E +
√
ω2 − iε

]
Now the residue theorem tells us that we can take −2πi times the residue, where the residue
is just for those singularities in the lower half plane (that is to say, those with the negative
imaginary part). Hence,

G(t− t′) = − i

2
√
ω2 − iε

Res
e−iE(t−t′)

E −
√
ω2 − iε

Now we let E =
√
ω2 − iε, which is the singularity. We drop the part that goes to zero

(that’s the beauty of taking the residue), and we’re left with:

G(t− t′) =
i

2
√
ω2 − iε

e−i
√
ω2−iε(t−t′)
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where the negative sign disappeared since we did the integral in the clockwise direction, and
the definition of the residue is taken assuming a counterclockwise direction. (By the way, we
know it’s the clockwise direction because the real integral ends at positive infintity, and we
need to make our way back to negative infinity by going through the lower complex plane.
This is obviously clockwise).

Now we let ε→ 0:

G(t− t′) =
i

2ω
e−iω(t−t

′) for t - t’ ≥ 0

Good. Now let’s assume that t− t′ ≤ 0. In this case we have to add on a semi-circle in the
upper half-plane, and we need to use the other singularity (since that’s the semi-circle that
equals zero). Everything will work the same as before, except for an overall minus sign (since
we’re using the other singularity, which has a minus sign in front of it) – but even that is
cancelled since the contour integral is in the counterclockwise direction this time. The only
real difference is in the exponential, since the opposite singularity was chosen:

G(t− t′) =
i

2ω
eiω(t−t

′) for t - t’ ≤ 0

Combining these results, we have:

G(t− t′) =
i

2ω
e−iω|t−t

′|

which is equation 7.14.

Srednicki 7.2. Starting with equation 7.14, verify equation 7.13.

Equation 7.14 is:

G =
i

2ω
e−iω|t−t

′|

Now we take the derivative:

∂G

∂t
=

i

2ω
(−iω)sign(t− t′)e−iω|t−t′|

∂G

∂t
=
sign(t− t′)

2
e−iω|t−t

′|

Now for another derivative:

∂2G(t− t′)
∂t2

= δ(t− t′)e−iω|t−t′| − iωsign(t− t′)2

2
e−iω|t−t

′|

This first term is only nonzero if t = t’, in which case the exponential doesn’t contribute.
Hence:

∂2G(t− t′)
∂t2

= δ(t− t′)− iωsign(t− t′)2

2
e−iω|t−t

′|

We’ll also move the last term to the other side:

∂2G(t− t′)
∂t2

+ iω
sign(t− t′)2

2
e−iω|t−t

′| = δ(t− t′)
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The sign function squared is one everywhere except at t = t’. So we’ll specialize to the case
where t 6= t′:

∂2G(t− t′)
∂t2

+
iω

2
e−iω|t−t

′| = δ(t− t′)

which is:
∂2G(t− t′)

∂t2
+ ω2G(t− t′) = δ(t− t′)

This is equation 7.13.

What about if t = t’? As it turns out, this proof – and equation 7.13 itself – don’t hold in
that case! But that’s okay because there’s no need to do path integrals if t = t’ ! In that
case, the amplitude is just one if the initial and final states are the same and zero otherwise.

Srednicki 7.3. (a) Use the Heisenberg equation of motion, Ȧ = i[H,A], to find
explicit expressions for Q̇ and Ṗ. Solve these to get the Heisenberg-picture op-
erators Q(t) and P(t) in terms of the Schrödinger-picture operators Q and P.

Using the formula for P:
Ṗ = i[H,P ]

Ṗ = i[
1

2m
P 2 +

1

2
mω2Q2, P ]

Ṗ =
i

2
mω2[Q2, P ]

Ṗ =
i

2
mω2 (Q[Q,P ] + [Q,P ]Q)

Ṗ = −mω2Q (7.3.1)

Note that h̄ was set to 1, but m was not (Srednicki set them both to one). Using the formula
for Q:

Q̇ = i[H,Q]

Q̇ = i[
1

2m
P 2 +

1

2
mω2Q2, Q]

Q̇ =
i

2m
[P 2, Q]

Q̇ =
i

m
[P,Q]P

Q̇ =
1

m
P (7.3.2)

Differentiating equation (7.3.1):
P̈ = −mω2Q̇

Inserting equation (7.3.2):
P̈ = −ω2P (7.3.3)

Similarly, differentate equation (7.3.2):

Q̈ =
1

m
Ṗ
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Inserting equation (7.3.1):
Q̈ = −ω2Q (7.3.4)

Solving equtations (7.3.3) and (7.3.4), we have:

P (t) = Acos(ωt) +Bsin(ωt)

Q(t) = Ccos(ωt) +Dsin(ωt)

Now, at time 0, the Schrödinger and Heisenberg pictures are the same – the kets haven’t
evolved in the Schrödinger picture, and the operators haven’t evolved in the Heisenberg
Picture. Hence, P (0) = P and Q(0) = Q, etc. So:

P (t) = Pcos(ωt) +Bsin(ωt)

Q(t) = Qcos(ωt) +Dsin(ωt)

Now we differentiate these and take the values at t = 0.

Ṗ (0) = Bω

Q̇(0) = Dω

Now we use equations (7.3.1) and (7.3.2), noting that the right hand side of these equations
are the Schrödinger picture operators, since the operators haven’t evolved yet at t = 0. Then,

Ṗ (0) = Bω = −mω2Q

Q̇(0) = Dω =
1

m
P

Hence,
B = −mωQ

D =
1

mω
P

and so:
P (t) = Pcos(ωt)−mωQsin(ωt) (7.3.5)

Q(t) = Qcos(ωt) +
1

mω
Psin(ωt) (7.3.6)

(b) Write the Schrödinger-picture operators Q and P in terms of the creation
and annihilation operators a and a†, where H = h̄ω(a†a + 1

2
). Then, using your

result from part (a), write the Heisenberg-picture operators Q(t) and P(t) in
terms of a and a†.

This is actually not a derivation as much as a definition. We use the usual definition from
quantum mechanics, see Sakurai 2.3.24:

Q =

√
1

2mω
(a† + a)

P = i

√
mω

2
(a† − a)
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We know that this definition is okay because the consequent Hamiltonian (Sakurai 2.3.6) is
equivalent to that in the problem statement.

Now we use equations (7.3.5) and (7.3.6):

P (t) = i

√
mω

2
(a† − a)cos(ωt)−

√
mω

2
(a† + a)sin(ωt)

Q(t) =

√
1

2mω
(a† + a)cos(ωt) + i

√
1

2mω
(a† − a)sin(ωt)

which is:

P (t) = i

√
mω

2

[
a† (cos(ωt) + isin(ωt))− a (cos(ωt)− isin(ωt))

]
Q(t) =

√
1

2mω

[
a† (cos(ωt) + isin(ωt)) + a (cos(ωt)− isin(ωt))

]
Hence:

P (t) = i

√
mω

2

[
a†eiωt − ae−iωt

]
(7.3.7)

Q(t) =

√
1

2mω

[
a†eiωt + ae−iωt

]
(7.3.8)

(c) Using your result from part (b), and a|0〉 = 〈0|a† = 0, verify equations 7.16
and 7.17.

Using equation (7.3.8):

〈0|TQ(t1)Q(t2)|0〉 = 〈0|T
√

1

2mω

[
a†eiωt + ae−iωt

]√ 1

2mω

[
a†eiωt + ae−iωt

]
|0〉

which is:

〈0|TQ(t1)Q(t2)|0〉 =
1

2mω
〈0|T

[
a†eiωt1 + ae−iωt1

] [
a†eiωt2 + ae−iωt2

]
|0〉

We’ll assume that t1 ≥ t2 Most of these terms annihilate the vacuum. The only one that
doesn’t is:

〈0|TQ(t1)Q(t2)|0〉 =
1

2mω
eiω(t2−t1)〈0|aa†|0〉

which is:

〈0|TQ(t1)Q(t2)|0〉 =
1

2mω
e−iω(t1−t2)

What about if t2 ≥ t1? In this case, the time ordering is opposite, so we simply take t1 ↔ t2:

〈0|TQ(t1)Q(t2)|0〉 =
1

2mω
eiω(t1−t2)

Combining these we have:

〈0|TQ(t1)Q(t2)|0〉 =
1

2mω
e−iω|t1−t2|
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which is:

〈0|TQ(t1)Q(t2)|0〉 =
1

i

i

2mω
e−iω|t1−t2|

Using equation 7.14 (and noting that Srednicki sets m = 1:

〈0|TQ(t1)Q(t2)|0〉 =
1

i
G(t2 − t1)

which is equation 7.16.

As for 7.17, the procedure is the same. We start by assuming that t1 ≥ t2 ≥ t3 ≥ t4:

〈0|TQ(t1)Q(t2)Q(t3)Q(t4)|0〉 = 〈0|
√

1

2mω

[
a†eiωt + ae−iωt

]√ 1

2mω

[
a†eiωt + ae−iωt

]
√

1

2mω

[
a†eiωt + ae−iωt

]√ 1

2mω

[
a†eiωt + ae−iωt

]
|0〉

〈0|TQ(t1)Q(t2)Q(t3)Q(t4)|0〉 =

(
1

2mω

)2

〈0|
[
a†eiωt1 + ae−iωt1

] [
a†eiωt2 + ae−iωt2

]
[
a†eiωt3 + ae−iωt3

] [
a†eiωt4 + ae−iωt4

]
|0〉

Some of these terms vanish:

〈0|TQ(t1)Q(t2)Q(t3)Q(t4)|0〉 = eiω(t4−t1)
(

1

2mω

)2

〈0|a
[
a†eiωt2 + ae−iωt2

] [
a†eiωt3 + ae−iωt3

]
a†|0〉

which gives:

〈0|TQ(t1)Q(t2)Q(t3)Q(t4)|0〉 = eiω(t4−t1)
(

1

2mω

)2

〈0|a
[
a†a†eiω(t2+t3) + a†aeiω(t2−t3)

+aa†eiω(t3−t2) + aae−iω(t2+t3)
]
a†|0〉

and then:

〈0|TQ(t1)Q(t2)Q(t3)Q(t4)|0〉 = eiω(t4−t1)
(

1

2mω

)2

〈0|aa†a†a†eiω(t2+t3) + aa†aa†eiω(t2−t3)

+aaa†a†eiω(t3−t2) + aaaa†e−iω(t2+t3)|0〉
The first and last terms eventually annihilate the vacuum:

〈0|TQ(t1)Q(t2)Q(t3)Q(t4)|0〉 = eiω(t4−t1)
(

1

2mω

)2

〈0|aa†aa†eiω(t2−t3) + aaa†a†eiω(t3−t2)|0〉

The operators now cancel out nicely, leaving:

〈0|TQ(t1)Q(t2)Q(t3)Q(t4)|0〉 =

(
1

2mω

)2 (
eiω(t4−t1)eiω(t2−t3) + 2eiω(t4−t1)eiω(t3−t2)

)
Rewriting this last term, and factoring out a factor of 1

i2
:

〈0|TQ(t1)Q(t2)Q(t3)Q(t4)|0〉 = − 1

i2

(
1

2mω

)2 (
eiω(t4−t1)eiω(t2−t3) + eiω(t4−t1)eiω(t3−t2)
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+eiω(t4−t2)eiω(t3−t1)
)

which gives:

〈0|TQ(t1)Q(t2)Q(t3)Q(t4)|0〉 =
1

i2

(
1

2mω

)2 (
ie−iω(t1−t2)ie−iω(t3−t4) + ie−iω(t1−t4)ie−iω(t2−t3)

+ie−iω(t2−t4)ie−iω(t1−t3)
)

As before, we’ve assumed that the time ordering was as written. If the time ordering is
backward, we can flip the offending terms, and the exponential will go positive. As a result,
we can put in absolute value signs to account for all possible orderings:

〈0|TQ(t1)Q(t2)Q(t3)Q(t4)|0〉 =
1

i2

(
1

2mω

)2 (
ie−iω|t1−t2|ie−iω|t3−t4| + ie−iω|t1−t4|ie−iω|t2−t3|

+ie−iω|t2−t4|ie−iω|t1−t3|
)

which gives:

〈0|TQ(t1)Q(t2)Q(t3)Q(t4)|0〉 =
1

i2
[G(t1 − t2)G(t3 − t4) +G(t1 − t4)G(t2 − t3)

+G(t2 − t4)G(t1 − t3)]
which is equation 7.17.

Srednicki 7.4. Consider a harmonic oscillator in its ground state at t = −∞. It
is then subjected to an external force f(t). Compute the probability |〈0|0〉f |2 that
the oscillator is still in its ground state at t =∞. Write your answer as a mani-
festly real expression, and in terms of the Fourier transform f̃(E) =

∫∞
−∞ dteiEtf(t).

Your answer should not involve any other unevaluated integrals.

The answer is Srednicki 7.10:

〈0|0〉f = exp

[
i

2

∫ ∞
−∞

dE

2π

f̃(E)f̃(−E)

−E2 + ω2 − iε

]
The remainder of the problem is just to simplify this and put it into the form requested.
First we note that

f̃(E) =

∫ ∞
−∞

dteiEtf(t)

so

f̃(−E) =

∫ ∞
−∞

dte−iEtf(t) (4.3.1)

and

f̃ ∗(E) =

∫ ∞
−∞

dte−iEtf(t) (4.3.2)

Hence f̃(−E) = f̃ ∗(E). Then,

〈0|0〉f = exp

[
i

2

∫ ∞
−∞

dE

2π

f̃(E)f̃ ∗(E)

−E2 + ω2 − iε

]
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which is:

〈0|0〉f = exp

[
i

2

∫ ∞
−∞

dE

2π

|f̃(E)|2

−E2 + ω2 − iε

]
This is of the form: ei(a+ib). Now that we take the magnitude of this, we have ei(a+ib)e−i(a−ib) =
e−2b. Hence,

|〈0|0〉f |2 = exp

[
−Im

{∫ ∞
−∞

dE

2π

|f̃(E)|2

−E2 + ω2 − iε

}]
Most of this is already manifestly real, so let’s move that outside of the Imaginary Operator.
Then,

|〈0|0〉f |2 = exp

[
−
∫ ∞
−∞

dE

2π
|f̃(E)|2 Im

{
1

−E2 + ω2 − iε

}]
This is:

|〈0|0〉f |2 = exp

[
−
∫ ∞
−∞

dE

2π
|f̃(E)|2 Im

{
1

−E2 + ω2 − iε
· −E

2 + ω2 + iε

−E2 + ω2 + iε

}]

|〈0|0〉f |2 = exp

[
−
∫ ∞
−∞

dE

2π
|f̃(E)|2 Im

{
−E2 + ω2 + iε

(−E2 + ω2)2 + ε2

}]
Taking the imaginary component:

|〈0|0〉f |2 = exp

[
−
∫ ∞
−∞

dE

2π
|f̃(E)|2 ε

(−E2 + ω2)2 + ε2

]
Let’s define a = ω2 − E2. Then:

|〈0|0〉f |2 = exp

[
−
∫ ∞
−∞

dE

2π
|f̃(E)|2 ε

a2 + ε2

]
Now we’re ready to let ε→ 0. We notice that:

lim
ε→0

ε

a2 + ε2
=

{
0 if a 6= 0
∞ if a = 0

This is a delta function by definition. But any delta function will work, so:

lim
ε→0

ε

a2 + ε2
= Cδ(a)

If we integrate both sides from −∞ to ∞, we find π = C. Then,

lim
ε→0

ε

a2 + ε2
= πδ(a)

Hence:

|〈0|0〉f |2 = exp

[
−
∫ ∞
−∞

dE

2π
|f̃(E)|2πδ(E2 − ω2)

]
Using a property of the delta function:

|〈0|0〉f |2 = exp

[
−
∫ ∞
−∞

dE

2
|f̃(E)|2

(
δ(E − ω)

|2E|
+
δ(E + ω)

|2E|

)]
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This is:

|〈0|0〉f |2 = exp

[
−
∫ ∞
−∞

dE

2
|f̃(E)|2 δ(E − ω)

2|E|

]
exp

[
−
∫ ∞
−∞

dE

2
|f̃(E)|2 δ(E + ω)

2|E|

]
Performing the integrals:

|〈0|0〉f |2 = exp

[
−1

2
|f̃(ω)|2 1

2ω

]
exp

[
−1

2
|f̃(−ω)|2 1

2ω

]
Now we noticed previously (equations (4.3.1) and (4.3.2)) that f̃(−x) = f̃ ∗(x). Consequently,

|f̃(−x)|2 = |f̃ ∗(x)|2 = |f̃(x)|2, which gives:

|〈0|0〉f |2 = exp

[
−1

2
|f̃(ω)|2 1

2ω

]
exp

[
−1

2
|f̃(ω)|2 1

2ω

]

|〈0|0〉f |2 = exp

[
−|f̃(ω)|2

2ω

]
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