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Srednicki 68.1. Consider the current correlation function 〈0|Tjµ(x)jν(y)|0〉 in
spinor electrodynamics.

(a) Show that its Fourier transform is proportional to

Πµν(k) +Πµρ(k)∆̃ρσ(k)Π
σν(k) + . . .

Recall from the second paragraph that Z1j
µ inside a correlation function is a vertex to which

an external photon can connect.

So, two such vertices will give the following diagram:

where the dashed circles represent a “black box” that can be anything (though this has to
be a vertex is defined in rule 7 in section 58; ie there have to be fermions involved). More
specifically, this can be a 1PI diagram, or several 1PI diagrams connected by a photon. We
therefore have:

Z2
1〈0|Tj

µjν |0〉 = Πµν(k) + Πµρ(k)∆̃ρσΠ
σν(k) + . . .

which shows the proportionality we expected.

(b) Use this to prove that Πµν(k) is transverse: kµΠ
µν = 0.

Recall from the previous section that:

kµM
µ = 0

Now remember that M is what we get from the correlation functions, which we evaluate
through the Feynman Diagrams, which are drawn in momentum space. So we take the
Fourier Transform to write this in position space:

∂µ〈0|Tj
µ(x)jν(x)|0〉 = 0
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Now we take the Fourier Transform again to get back to momentum space, and we have
from the result in part (a) that:

kµ

(
Πµν +Πµρ(k)∆̃ρσΠ

σν(k) + . . .
)

Nothing in general will cancel with this first term, so it must go to zero on its own. Thus:

kµΠ
µν = 0

ie that Π is transverse, as expected.

Srednicki 68.2. Verify that equation 68.12 holds at the one-loop level with
Z1 = Z2.

The exact vertex function is given by:

V µ(p′, p) = eZ1γ
µ + V1−loop(p

′, p) + . . .

which we get just from the Lagrangian in 62.2. Then:

(p′ − p)µV
µ(p′, p) = eZ1(/p

′ − /p) + (p′ − p)µV
µ
1−loop(p

′, p) (68.2.1)

which at least gives us an equation we can work with. To make progress, we need an equation
for the one-loop term – and we need it to be gauge-independent! Let’s use 62.40 (we insert
the missing factor of Z3

1 :

V µ
1−loop(p

′, p) = −i(Z1e)
3

∫
d4ℓ

(2π)4

[
γρS̃(/p

′ + /ℓ)γµS̃(/p+ /ℓ)γν
]
∆̃νρ(ℓ)

This gives:

(p′ − p)µV
µ
1−loop(p

′, p) = −i(Z1e)
3

∫
d4ℓ

(2π)4

[
γρS̃(/p

′ + /ℓ)(/p′ − /p)S̃(/p+ /ℓ)γν
]
∆̃νρ(ℓ) (68.2.2)

Just for fun, let’s rewrite this as:

(p′−p)µV
µ
1−loop(p

′, p) = −i(Z1e)
3

∫
d4ℓ

(2π)4

[
γρS̃(/p

′ + /ℓ)(/p′ + ℓ+m− /p− ℓ−m)S̃(/p+ /ℓ)γν
]
∆̃νρ(ℓ)

(68.2.3)

Now we recall S̃ represents an internal fermion written in momentum space. By the Feynman
Rules, the value is:

S̃(p) =
−/p+m

p2 +m2 − iε

Note that we dropped the−i, since the feynman rules give the value of the diagram multiplied
by i. We drop the infinitesimal part, implicitely promising not to allow the denominator to
vanish. We then use 47.10 to rewrite this as:

S̃(p) =
−/p+m

(−/p+m)(/p+m)
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and so:

S̃(p) =
1

/p+m

Now we use this in (68.2.3):

(p′−p)µV
µ
1−loop(p

′, p) = −i(Z1e)
3

∫
d4ℓ

(2π)4

[
γρS̃(/p

′ + /ℓ)(S̃(/p′ + ℓ)−1 − S̃(/p+ ℓ)−1)S̃(/p+ /ℓ)γν
]
∆̃νρ(ℓ)

Cancelling some stuff:

(p′ − p)µV
µ
1−loop(p

′, p) = −i(Z1e)
3

∫
d4ℓ

(2π)4
γρ

(
S̃(/p+ /ℓ)− S̃(/p′ + ℓ)

)
γν∆̃νρ(ℓ)

Now we use equation 62.28:

(p′ − p)µV
µ
1−loop(p

′, p) = Z1e
[
Σ(/p)− Σ(/p′) + (Z2 − 1)(/p− /p′) + . . .

]

Notice that each term here is at least of order e3 already. To avoid going to higher order,
we approximate Z1 = 1, absorbing higher terms into the ellipses. Then:

(p′ − p)µV
µ
1−loop(p

′, p) = e
[
Σ(/p)− Σ(/p′) + (Z2 − 1)(/p− /p′) + . . .

]

Now we’re ready to put this back into equation (68.2.1):

(p′ − p)µV
µ(p′, p) = eZ1(/p

′ − /p) + e
[
Σ(/p)− Σ(/p′) + (Z2 − 1)(/p− /p′) + . . .

]

If Z1 = Z2, then:

(p′ − p)µV
µ(p′, p) = e

[
Σ(/p)− Σ(/p′)− (/p− /p′) + . . .

]

which is:
(p′ − p)µV

µ(p′, p) = e
[
Σ(/p)− /p− Σ(/p′) + /p′ + . . .

]

Thus:
(p′ − p)µV

µ(p′, p) = e
[
−
(
/p+m− Σ(/p)

)
+ (/p′ +m− Σ(/p′)) + . . .

]

Finally we use 62.27, ignoring the infinitesimal (or adding and subtracting it, as you like):

(p′ − p)µV
µ(p′, p) = eS̃(/p′)−1 − eS̃(p)−1

which is 68.12, given that Z1 = Z2.

Note: Be careful not to confuse the exact fermion propagator S with the internal tree-level

propagator S. The symbols are the same up to the boldface.

Note 2: This problem is extremely challenging without further hints. All the steps are easy

enough, but writing this argument was not at all obvious: we had to use results across several

chapters, including the simplification of the internal propagator, which was never done in the

text.
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Note 3: There is a slight mistake in Srednicki’s equation 68.20 in his solutions; the cor-

rection is obvious in my solution.

Srednicki 68.3. Scalar Electrodynamics.

(a) Consider the Fourier Transform of 〈0|TJµ(x)φ(y)φ†(z)|0〉, where:

Jµ = −ieZ2[φ
†∂µφ− (∂µφ†)φ]− 2Z1e

2Aµφ†φ

is the Noether current. You may assume that Z4 = Z2

1
/Z2 (which is necessary

for gauge invariance). Show that:

(p′ − p)µV
µ

3
(p′, p) = Z−1

2
Z1e

[
∆̃(p′)−1 − ∆̃(p)−1

]

where V µ

3
(p′, p) is the exact scalar-scalar-photon vertex function, and ∆̃(p) is

the exact scalar propagator.

As instructed, we consider the Fourier Transform of this, getting something analogous to
68.1:

Cµ(k, p′, p) =

∫
d4xd4yd4zeik1x−ik2y+ik3z〈0|TJµ(x)φ(y)φ†(z)|0〉

Now we plug in the conserved current:

Cµ(k, p′, p) =

∫
d4xd4yd4zeik1x−ik2y+ik3z

{
(−ieZ2)〈0|Tφ

†(x)∂µφ(x)φ(y)φ†(z)|0〉−

(−ieZ2)〈0|T∂
µφ†(x)φ(x)φ(y)φ†(z)|0〉+ (−2Z1e

2Aµ)〈0|Tφ†(x)φ(x)φ(y)φ†(z)|0〉
}

Now we consider:

φ(x) =

∫
d4ke−ikxφ̃(k)

∂µφ(x) = ∂µ

∫
d4ke−ikxφ̃(k)

∂µφ(x) = −i

∫
d4ke−ikxφ̃(k)

Now we need to be very careful. In principle, this is the end of the line. However, in our
equation, we are Fourier Transforming over the xs, so any function of x is really a function
of k. Therefore, there is no harm in writing this as

∂µφ(x) = −ikφ(x)

Though this is NOT true in general.

Plugging this in, we have:

Cµ(k, p′, p) =

∫
d4xd4yd4zeik1x−ik2y+ik3z

{
(−ekµZ2)〈0|Tφ

†(x)φ(x)φ(y)φ†(z)|0〉−
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(kµeZ2)〈0|Tφ
†(x)φ(x)φ(y)φ†(z)|0〉+ (−2Z1e

2Aµ)〈0|Tφ†(x)φ(x)φ(y)φ†(z)|0〉
}

These terms now combine:

Cµ(k, p′, p) = −2

∫
d4xd4yd4zeik1x−ik2y+ik3z(ekµZ2 + e2AµZ1)〈0|Tφ

†(x)φ(x)φ(y)φ†(z)|0〉

Now we use the solution to problem 8.8 to get the correlation functions:

Cµ(k, p′, p) = 2

∫
d4xd4yd4zeik1x−ik2y+ik3z(ekµZ2 + e2AµZ1)∆(x− z)∆(y − x)

Now we write the exponential slightly differently:

Cµ(k, p′, p) = 2

∫
d4xd4yd4zei[−k3(x−z)−k2(y−x)+(k1−k2+k3)x](ekµZ2+ e2AµZ1)∆(x− z)∆(y−x)

Now I want to define a = 1√
2
(x− z), b = 1√

2
(y − z), and c = x in order to proceed. However,

this is a non-orthogonal basis, and so it is not possible to do these integrals as we would
need to in order to get the desired answer.

So how does Srednicki get his answer? He bypasses much of this math by using physi-
cal intuition, and while I believe that his work is correct, I also believe that his technique
is not fully general. I could be wrong, but I think that he got lucky in that passing over
these difficulties did not affect the outcome. Therefore, I will not reproduce his solution here.

Please feel free to e-mail with thoughts on this problem.
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