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Srednicki 66.1. Compute the one-loop contributions to the anomalous dimen-
sions of m, Ψ, and Aµ in spinor electrodynamics in Feynman gauge.

We begin with this calculation, which we will need later. By equation 66.23:

ln e0 =
∞∑
n=1

En(e, λ)

εn
+ ln e+

ε

2
ln µ̃

We take the derivative of both sides with respect to lnµ. The left hand side is a bare
parameter which should not depend on µ, so that vanishes. The sum also vanishes, because
a renormalizable theory should be well-defined around ε = 0. The other two terms can then
be equated:

1

e

de

lnµ
= −ε

2

d ln µ̃

d lnµ

µ and µ̃ are different only by a constant, so this derivative will vanish. Then:

de

lnµ
= −eε

2
(66.1.1)

Now we have, by definition:

γm =
d lnm

d lnµ

Notice that L ∼ Z2Ψ/∂Ψ. This implies that Ψ0 = Z
1/2
2 Ψ. Further, we have: L ∼ ZmmΨΨ,

which gives us that m0 = mZm/Z2. Then:

γm =
d

d lnµ
[lnm0 + ln (Z2/Zm)]

This bare field does not depend on µ, so we can drop this term:

γm =
d

d lnµ
ln (Z2/Zm)

Using the chain rule:

Zm =
d ln(Z2/Zm)

de

de

d lnµ
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Now we use equation (66.1.1):

Zm = −eε
2

d

de
(lnZ2 − lnZm)

Now we use 62.34 and 62.35, and recall ln(1 + x) = x+ . . .. Then:

Zm = −eε
2

d

de

(
− e2

8π2ε
+

e2

2π2ε

)
which is:

Zm = −eε
2

d

de

(
3e2

8π2ε

)
Taking the derivative:

Zm = − 3e2

8π2

Now for the fields; we have:

γΨ =
1

2

d lnZΨ

d lnµ

In this case, ZΨ = Z2, where Z2 = 1 − e2

8π2ε
. This depends only on e; therefore we use the

chain rule:

γΨ =
1

2

d lnZ2

de

de

d lnµ

Using equation (66.1.1)

γΨ = −eε
4

d lnZ2

de

Expanding:

γΨ = −eε
4

d

de

[
− e2

8π2ε

]
Taking the derivative:

γΨ =
e2

16π2

As for A, we proceed as before:

γA = −eε
4

d lnZ3

de

Using 62.24, expanding, and setting aside the finite portion (this will vanish anyway when
ε→ 0):

γA = −eε
4

−e
3π2

1

ε

which is:

γA =
e2

12π2

Srednicki 66.2. Compute the one-loop contributions to the anomalous dimen-
sions of m, φ, and Aµ in scalar electrodynamics.
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As before, we relate the bare fields to the renormalized fields to determine that φ0 = Z
1/2
2 φ,

and further that m0 = Z
1/2
m Z

−1/2
2 m. This gives lnm0 = lnm+ 1

2
ln
(
Zm

Z2

)
. Then,

γm =
d lnm

d lnµ

which is:

γm =
d

d lnµ

[
lnm0 −

1

2
ln

(
Zm
Z2

)]
The bare parameters should be independent of µ, and so:

γm = −1

2

d

d lnµ
ln(ZmZ

−1
2 )

Expanding the logarithm about 0:

γm = −1

2

d

d lnµ

[
λ

8π2ε
− 3e2

8π2ε

]
Using the chain rule, we have:

γm = −1

2

[
d

de

de

d lnµ
+

d

dλ

dλ

d lnµ

] [
λ

8π2ε
− 3e2

8π2ε

]
Equation (66.1.1) gives de

d lnµ
= − eε

2
, and performing the analogous operation to equation

66.24 gives dλ
d lnµ

= −λε. This gives:

−1

2

[
−eε

2

d

de
− λε d

dλ

] [
λ

8π2ε
− 3e2

8π2ε

]
Doing the derivatives and simplifying, we have:

γm =
λ− 3e2

16π2

Similarly, we have:

γφ =
1

2

d lnZφ
d lnµ

Equaton 65.25 tells us that Zφ = Z2 in this case. Thus,

γφ =
1

2

d lnZ2

d lnµ

Using the chain rule:

γφ =
1

2

d lnZ2

de

de

d lnµ
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Solving this, using equation (66.1.1):

γφ =
1

2

[
3e

4π2ε

] [
−eε

2

]
Simplifying this, we have:

γφ = − 3e2

16π2

Now we repeat this for A, which has Z3 as a coefficient. We have:

γA =
1

2

d lnZ3

de

de

d lnµ

This gives:

γA =
e2

48π2

Srednicki 66.3. Use the results of problem 62.2 to compute the anomalous di-
menios of m and the beta function for e in spinor electrodynamics in Rξ gauge.
You should find that the results are independent of ξ.

From 62.3, we have Ψ0 = Z
1/2
2 Ψ, and so m0 = Z−1

2 Zmm. Taking the logarithm, we have

lnm0 = lnm+ lnZmZ
−1
2

Taking the derivative, we have:

d lnm0

d lnµ
=
d lnm

d lnµ
+
d ln(Zm/Z2)

d lnµ

The bare fields are independent of µ, so:

d lnm

d lnµ
= − d

d lnµ
ln [Zm/Z2]

Now γm = d lnm
d lnµ

, so

γm = − d

d lnµ
[lnZm − lnZ2]

Using the chain rule and our results from problem 62.2, we have:

γm = − d

de

de

d lnµ

[(
1− e2(3 + ξ)

8π2ε

)
− ln

(
1− e2ξ

8π2ε

)]
From equation (66.1.1) (the derivation of which stands on its own), we have de

d lnµ
= − eε

2
.

Also recall that ln(1 + x) = x+ . . .. Thus:

γm = −
(
−eε

2

) d

de

[
−e

2(3 + ξ)

8π2ε
+

e2ξ

8π2ε

]
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This gives:

γm =
eε

2

[
− 3e

4π2ε

]
which is:

γm = − 3e2

8π2

Now for the beta function. Matching bare fields with renormalized fields, we have Ψ0 =
Z

1/2
2 Ψ, which implies m0 = Z−1

2 Zmm. Further, A0 = Z
1/2
3 A. These imply that:

e0 = Z−1
2 Z

−1/2
3 Z1e

Now we should shift the mass dimensionality off of e. We have L ∼ Ψ/∂Ψ; the ∂ has a mass
dimensionality of 1, so the Ψ must have mass dimensionality of (d− 1)/2. The last term in
equation 62.1 reduces to L ∼ ∂µAν∂µAν , so A has mass dimensionality of (d − 2)/2. Now
consider the term L ∼ eΨ /AΨ. Using this, we see that in four dimensions, [e] = 0, and in six
dimensions, [e] = −1. Thus, [e] = ε/2, where ε = 4− d. Thus:

e0 = Z−1
2 Z

−1/2
3 Z1eµ̃

ε/2

Using the result from problem 62.2, we have:

lnZ1 = − e2ξ

8π2ε
+ . . .

lnZ−1
2 =

e2ξ

8π2ε
+ . . .

lnZ
−1/2
3 =

e2

12π2ε
+ . . .

This gives:

lnZ1Z
−1
2 Z

−1/2
3 = E =

∞∑
i=1

Ei
εi

=
e2

12π2ε
+ . . .

Now we have:
ln e0 = E + ln e+

ε

2
lnµ

Taking the derivative with respect to lnµ, and using the chain rule:

0 =
∂E

∂e

∂e

∂ lnµ
+
∂ ln e

∂ lnµ
+ ε/2

Take the derivative in the second term:

0 =
∂E

∂e

∂e

∂ lnµ
+

1

ε

∂e

∂ lnµ
+ ε/2

Now we factor:

0 =

(
e
∂E

∂e
+ 1

)
∂e

∂ lnµ
+
eε

2

5



Now we use our usual “physical reasoning” trick: a renormalizabel theory should be well
defined as ε→ 0, so we can set aside the E term. Then:

de

d lnµ
= −eε

2
+ β(e)

This gives:

0 =

(
e
∂E

∂e
+ 1

)(
−eε

2
+ β(e)

)
+
eε

2

Now we distribute, and match up the terms with no εs. We find:

e
∂E1

∂e

1

ε
·
(
−eε

2

)
+ β(e) = 0

This gives:

β(e) =
e3

12π2

Srednicki 66.4. The value of α(MW ). The solution of equation 66.12 is:

1

α(MW )
=

1

α(µ)
−

2

3π

∑∑∑
i

Q2
i ln (MW/µ)

where the sum is over all quarks and leptons (each color of quark counts sepa-
rately), and we have chosen the W± boson mass MW as a reference scale. We
can define a different renormalization scheme, modified decoupling subtraction
or DS, where we imagine integrating out a field when µ is below its mass. In
this scheme, equation 66.30 becomes:

1

α(MW )
=

1

αµ
−

2

3π

∑∑∑
i

Q2
i ln [MW/min(mi, µ)]

where the sum is now over all quarks and leptons with mass less that MW . For
µ < me, the DS, scheme coincides with the OS scheme, and we have

1

α(MW )
=

1

α
−

2

3π

∑∑∑
i

Q2
i ln (MW/mi)

where α = 1/137.036 is the fine-structure constant in the OS scheme. Using
mµ = md = ms ∼ 300 MeV for the light quark masses (because quarks should
be replaced by hadrons at lower energies), and other quark and lepton masses
from sections 83 and 88, compute α(MW ).

It’s just a matter of plugging into the formula. We have:

1

α(Mw)
= 137.036− 2

3π

{
(±1)2 ln

[
M3

W

0.511 · 105.7 · 1777

]
+ 3 ·

(
2

3

)2

ln

[
M3

W

300 · 1300 · 174000

]
+
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3 ·
(

1

3

)2

ln

[
M3

W

300 · 300 · 4300

]}
which is:

1

α(Mw)
= 128.7
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