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Srednicki 64.1. Let the wave packet be f(~p) ∝ exp ( − a2~p2/2)Yℓm(p̂), where
Yℓm(p̂) is a spherical harmonic. Find the contribution of the orbital angular
momentum to the magnetic moment.

The key point is that we want the orbital angular momentum’s contribution to the magnetic
moment, not the entire magnetic moment.

This would be easy to do if we had an ~L term and an ~S term in our answer. Recall that we
have Lz = x∂y − y∂x. A little trial and error shows that this is easiest to get if we choose
the following vector potential:

~A =
B

2
〈−y, x, 0〉

Now recall that F µν = ∂µAν − ∂νAµ. This gives us that F 12 = −F 21 = B, and all other
components of F are zero.

Now we plug in everything we’ve found into 64.3, drop the time integral to move from
the action to the Lagrangian, and introduce a negative sign to move from the Lagrangian to
the Hamiltonian.

H1 = −
eB

2

∫
d3xΨ

[
−yγ1 + xγ2 +

α

πm
S12

]
Ψ

Using equation 64.7 (definition of the magnetic moment), we can identify:

µ =
e

2

∫
d3x 〈e|Ψ

[
−yγ1 + xγ2 +

α

πm
S12

]
Ψ|e〉

Now we can use 64.4 to get rid of the bracket and the Dirac fields, replacing them instead
with just a spinor:

µ =
e

2

∫
d3xd̃pd̃p′ f ∗(p′)〈0|b+(p

′)Ψ
[
−yγ1 + xγ2 +

α

πm
S12

]
Ψb†+(p)f(p)|0〉

Now the vacuum will be affected only by things that can be decomposed into creation
operators, which will be the Dirac field, and the creation operator itself. We can therefore
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use equation 64.8 – note that we have to be careful with where we place the spinors, since
we don’t want to resort to index notation:

µ =
e

2

∫
d3x d̃p d̃p′ f ∗(p′)u+(p

′)
[
−yγ1 + xγ2 +

α

πm
S12

]
u+(p)e

i(p−p′)xf(p)

Next we rewrite x = −i∂px and y = −i∂py acting on the exponential; we then integrate by
parts (which switches the sign back) and puts the derivative acting on the u+(p)f(p). Then:

µ =
e

2

∫
d3x d̃p d̃p′ ei(p−p′)x f ∗(p′)u+(p

′)
[
−iγ1∂py + iγ2∂px +

α

πm
S12

]
u+(p)f(p)

Now we can do the integral over d3x:

µ =
(2π)3e

2

∫
d̃p d̃p′ δ3(p− p′) f ∗(p′)u+(p

′)
[
−iγ1∂py + iγ2∂px +

α

πm
S12

]
u+(p)f(p)

Now we do the p′ integral:

µ =
e

4ω

∫
d̃p f ∗(p)u+(p)

[
−iγ1∂py + iγ2∂px +

α

πm
S12

]
u+(p)f(p)

Next we use the product rule. Note that S12 is a matrix, and so will not act on a function.
Then:

µ =
e

4ω

∫
d̃p f ∗(p)u+(p)

[
−iγ1f(p)∂pyu+(p) + iγ2f(p)∂pxu+(p)− iγ1u+(p)∂pyf(p)+

iγ2u+(p)∂pxf(p) +
α

πm
f(p)S12u+(p)

]

Now f(p) is still peaked around p = 0, so we can still use equation 64.12 and 64.13. This can
be applied directly to the second term; to apply it to the first term, we get an additional
minus sign from S21 = −S12. Thus:

µ =
e

4ω

∫
d̃p f ∗(p)

[
2

m
f(p)u+(0)S

12u+(0)− iu+(0)γ
1u+(p)∂pyf(p) + iu+(0)γ

2u+(p)∂pxf(p)

+
α

πm
f(p)u+(p)S

12u+(p)
]

In the last term we expanding around p = 0 (since the expression is strongly peaked around
p=0), finding that u(p) = u(0). We can then combine the first and last terms:

µ =
e

4ω

∫
d̃p f ∗(p)

[
1

m

(
2 +

α

π

)
f(p)u+(0)S

12u+(0)− iu+(0)γ
1u+(p)∂pyf(p) + iu+(0)γ

2u+(p)∂pxf(p)

]

Now recall u+(p)γ
iu+(p) = 2pi. Then:

µ =
e

4ω

∫
d̃p f ∗(p)

[
1

m

(
2 +

α

π

)
f(p)u+(0)S

12u+(0)− 2ipx∂pyf(p) + i2py∂pxf(p)

]
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Now we can factor a bit:

µ =
e

2ω

∫
d̃p f ∗(p)

[
1

m

(
1 +

α

2π

)
f(p)u+(0)S

12u+(0)− i (px∂py − py∂px) f(p)

]

Now recall that L̂ = r×p, which in the momentum basis is L̂ = i∂px×p (the derivative does

not act on the p). Then L̂z = ipy∂px − ipx∂py. Then:

µ =
e

2ω

∫
d̃p f ∗(p)

[
1

m

(
1 +

α

2π

)
f(p)u+(0)S

12u+(0) + Lzf(p)

]

Further, notice that Sz = S12:

µ =
e

2ω

∫
d̃p f ∗(p)

[
1

m

(
1 +

α

2π

)
f(p)u+(0)Szu+(0) + Lzf(p)

]
(64.1.1)

Lz acting on the spherical harmonic, will give mℓ. Similarly, Sz acting on the spherical
harmonic will give ms. Then:

µ =
e

2ω

∫
d̃p f ∗(p)

[
1

m

(
1 +

α

2π

)
f(p)u+(0)msu+(0) +mℓf(p)

]

Now u+(0)u+(0) = 2m, so:

µ =
e

2ω

∫
d̃p f ∗(p)

[
2ms

(
1 +

α

2π

)
f(p) +mℓf(p)

]

Now the wave packet is normalized; this allows us to do the integral as in equation 64.14
(notice in the text that the integral involves swapping ω for m). Nothing changes since the
spherical harmonics are also normalized in the same way. Finally, recall that for an electron,
ms = 1/2. So:

µ =
e

m

[
1

2

(
1 +

α

2π

)
+

mℓ

2

]

We see that the first term corresponds exactly to equation 64.16, so the second term must
be due to the orbital angular momentum. This is also apparent by noticing that every term
in equation (64.1.1) has an operator, and the last term has the Lz operator. Thus, the
contribution to the orbital angular momentum in this case is:

µℓ =
emℓ

2m

For an electron, mℓ = ±1
2
.

Note: this is a wonderful and worthwhile problem, but it is not clear to me that it is ob-

vious to switch gauges. A hint to that effect would be helpful. Normally I would try to

provide a more intuitive solution than Srednicki; however in this case, the alternative in-

volves trying to find a general formula for the derivative of spherical harmonics in Cartesian

Coordinates. I do not believe this is possible, but even if it were, I personally would prefer

to gouge my own eyes out with a meat cleaver.
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