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Srednicki 62.1. Show that adding a gauge fixing term −
1

2
ξ−1(∂µAµ)

2 to L results
in equation 62.9 as the photon propagator. Explain why ξ = 0 corresponds to
Lorentz gauge ∂µAµ = 0.

The term in question is:

LGF = −
1

2
ξ−1(∂µAµ)

2

This term will contribute the following to the action:

SGF = −
1

2
ξ−1

∫
d4x ∂µAµ(x)∂

νAν(x)

Next we take the Fourier transform, which is:

f(x) =

∫
d4k

(2π)4
e−ikxf̃(k)

Thus:

SGF =
1

2
ξ−1

∫
d4x

d4k

(2π)4
d4k′

(2π)4
e−ikxe−ik′x kµk′νÃµ(x)Ãν(x)

Next we do the x-integral:

SGF =
1

2
ξ−1

∫
d4k

d4k′

(2π)4
δ4(k + k′) kµk′νÃµ(x)Ãν(x)

Next we do the k′ integral:

SGF = −
1

2
ξ−1

∫
d4k

(2π)4
kµkνÃµ(k)Ãν(−k)

Now let’s write down the entire action of section 57, with this new term added:

S =
1

2

∫
d4k

(2π)4

[
−Ãµ(k)

(
k2gµν − (1− ξ−1)kµkν

)
Ãν(−k) + J̃µ(k)Ãµ(−k) + J̃µ(−k)Ãµ(k)

]

(62.1.1)
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Next we change the path integration variable to:

χ̃(k) = Ã(k)−

[
k2gµν −

(
1−

1

ξ

)
kµkν

]
−1

J̃(k)

As usual, we need to invert this matrix. Let’s “guess” the following form (second brackets),
then check it: [

k2gµν −

(
1−

1

ξ

)
kµkν

] [
gνρ/k

2 − (1− ξ)
kνkρ
k2k2

]
?
= δµρ

Multiplying:

gµνgνρ − gµν(1− ξ)
kνkρ
k2

−

(
1−

1

ξ

)
kµkν

k2
gνρ +

(
1−

1

ξ

)
(1− ξ)

kµkνkνkρ
k2k2

?
= δµρ

Using the metric:

gµρ − (1− ξ)
kµkρ
k2

−

(
1−

1

ξ

)
kµkρ
k2

+

(
1−

1

ξ

)
(1− ξ)

kµkρ
k2

?
= δµρ

Simplifying:

gµρ −
kµkρ
k2

[
(1− ξ) +

(
1−

1

ξ

)
−

(
1−

1

ξ

)
(1− ξ)

]
?
= δµρ

The term in brackets vanishes, leaving:

gµρ
X
= δµρ

Thus, our path integration variable becomes:

χ̃µ(k) = Ãµ(k)−

[
gµν/k2 − (1− ξ)

kµkν

k2k2

]
J̃ν(k)

With this substitution, our action becomes:

S0 =
1

2

∫
d4k

(2π)4

{
J̃(k)

[
gνρ/k

2 − (1− ξ)
kνkρ
k2k2

]
J̃(−k)− χ̃(k)

[
k2gµν −

(
1−

1

ξ

)
kµkν

]
χ̃(−k)

}

Following the procedure in chapter 8, we perform the integral over χ, which yields a factor
of one. Further, we do the usual epsilon trick. Thus:

Z(J) = exp

[
i

2

∫
d4k

(2π)4
J̃µ(k)

1

k2 − iε

(
gµν − (1− ξ)

kµkν
k2

)
J̃ν(−k)

]

We read off the propagator from this:

∆̃µν(k) =
1

k2 − iε

(
gµν − (1− ξ)

kµkν
k2

)

which is equation 62.9.
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As to how this is Lorentz Gauge, we return to the full path integral (62.1.1), which has a
factor of ξ−1. Thus, this will vanish more and more rapidly, which vanishes by the Riemann-
Lebesque Lemma. To avoid a vanishing path integral, we need this term to be set to zero
through another means, namely through kµÃµ(k) = 0, which in position space would be
∂µAµ(k) = 0. This is Lorentz Gauge.

Note: Srednicki’s solution here is even more wrong than unusual. He states “Since P µν(k)
and kµkν/k2 are orthogonal projection matrices, the propagator is (1/k2)[P µν + ξkµkν/k2].”
It is true that these are orthogonal projection matrices, and it is therefore possible to take
the inverse of both terms separately. But, precisely because they are projection matrices, both
matrices are non-invertible. With respect to P µν, this difficulty was addressed in chapter
57. But kµkν/k2 is non invertible. The argument presented in chapter 57 does not apply
here. In fact, that argument proves that anything that will survive this projection matrix
will not contribute to the integral, and so the matrix maps everything onto 0, destroying the
information. There is no way to reverse this.

However, this is not a problem: the entire matrix k2[P µν + ξ−1kµkν/k2] is not a projec-
tion matrix, and is completely invertible, as shown above. The only exception is when ξ = 0,
of course – that’s the special case that Srednicki treated in chapter 57. In some sense, then,
Srednicki did the special case, leaving us with the easier (but more important) general case.
We can therefore appreciate the importance of this problem for the conceptual completeness
of our study of QFT. Further, the result (equation 62.9) is very important; we will do some-
thing similar for gluons in chapter 72 with little discussion, as that argument is analogous
to this one.

Srednicki 62.2. Find the coefficients of e2/ε of Z1,2,3,m in Rξ gauge. In par-
ticular, show that Z1 = Z2 = 1+O(e4) in Lorenz Gauge.

Note: apparently Hendrik Lorentz (who you’ve probably heard of) and Ludvig Lorenz (proba-
bly not) were contemporaneous physicists with similar research interests. The gauge condition
Srednicki specifies correctly refers to Lorenz, not Lorentz.

Let’s be a little bit clear. Srednicki already calculated these, but he did so in Feynman
Gauge, ie with ξ = 1. We need to repeat this with a general ξ.

So what does ξ 6= 1 change? As we showed in problem 62.1, the corresponding term in
the Lagrangian affects the free propagator only; it does not introduce an interaction term.
Therefore, only the photon propagator changes.

Note that figure 62.1 does not include a photon propagator. Thus, Z3 is unchanged, and we
can read off the coefficient to e2/ε from equation 62.24 (ignoring the finite terms):

Z3 = 1−
e2

6π2ε
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Now we turn to figure 62.2. Assessing the value of this still yields equation 62.28:

iΣ(/p) = (iZ1e)
2

(
1

i

)2 ∫
d4ℓ

(2π)4

[
γνS̃(/p+ /ℓ)γµ

]
∆̃µν(ℓ)− i(Z2 − 1)/p− i(Zm − 1)m

However, in this gauge the photon propagator is given by equation 62.9 rather than 62.29:

∆̃µν(ℓ) =
gµν + (ξ − 1)ℓµℓν/ℓ

2

(ℓ2 +m2
γ − iε)

As discussed in the chapter, we set Z1 = 1, anticipating that it will have no first-order terms
in ε. Then, with S̃ as given below equation 62.12, we have:

iΣ(/p) = e2
∫

d4ℓ

(2π)4

[
γν

(
−/p− /ℓ +m

(p+ ℓ)2 +m2 − ε

)
γµ

(
gµν + (ξ − 1)ℓµℓν/ℓ

2

ℓ2 +m2
γ

)]
−i(Z2−1)/p−i(Zm−1)m

Now we can drop all the infinitesimal terms in the denominator, since we don’t have to worry
about the denominator vanishing. This gives:

iΣ(/p) = iΣch(/p) + e2
∫

d4ℓ

(2π)4

[
γν

(
−/p− /ℓ +m

(p+ ℓ)2 +m2

)
γµ

(
(ξ − 1)ℓµℓν/ℓ

2

ℓ2

)]

where Σch(/p) refers to the Σ that Srednicki worked out in the chapter. Then:

∆Σ(/p) = e2
∫

d4ℓ

(2π)4

[
γν

(
−/p− /ℓ +m

(p+ ℓ)2

)
γµ

(
(ξ − 1)ℓµℓν/ℓ

2

ℓ2

)]

which is:

∆Σ(/p) = e2(ξ − 1)

∫
d4ℓ

(2π)4

/ℓ(−/p− /ℓ +m)/ℓ

[(p+ ℓ)2 +m2][ℓ2][ℓ2]

Now we use Feynman’s Formula to combine the denominator.

∆Σ(/p) = 2e2(ξ − 1)

∫
d4ℓ

(2π)4

∫ 1

0

dx1

∫ 1−x1

0

dx2

/ℓ(−/p− /ℓ +m)/ℓ

[((p+ ℓ)2 +m2)x1 + ℓ2x2 + ℓ2(1− x1 − x2)]
3

Simplifying this, we arrive at:

∆Σ(/p) = 2e2(ξ − 1)

∫
d4ℓ

(2π)4

∫ 1

0

dx1

∫ 1−x1

0

dx2

/ℓ(−/p− /ℓ +m)/ℓ

[p2x1 + 2(ℓ · p)x1 +m2x1 + ℓ2]3

We can do the x2 integral:

∆Σ(/p) = 2e2(ξ − 1)

∫
d4ℓ

(2π)4

∫ 1

0

dx1

/ℓ(−/p− /ℓ +m)/ℓ(1− x1)

[p2x1 + 2(ℓ · p)x1 +m2x1 + ℓ2]3

Now we define q = ℓ+ x1p, and D = m2x1 + p2x1(1− x1). This gives:

∆Σ(/p) = 2e2(ξ − 1)

∫
d4ℓ

(2π)4

∫ 1

0

dx
/ℓ(−/p− /ℓ +m)/ℓ(1− x)

(q2 +D)3
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Next we use ℓ = q − xp to write this as:

∆Σ(/p) = 2e2(ξ − 1)

∫
d4q

(2π)4

∫ 1

0

dx
(/q − x/p)(−/p− /ℓ +m)(/q − x/p)(1− x)

(q2 +D)3

Now recall that only terms even in q integrate to something nonzero. The zero-order terms
can also be neglected, because something with O(q−6), after four integrals, will still be of
order O(q−2), which will not diverge.

∆Σ(/p) = 2e2(ξ − 1)

∫
d4q

(2π)4

∫ 1

0

dx
N(1− x)

(q2 +D)3
+ (finite)

where
N = −/q/p/q + /q/qx/p+ /qx/p/q − x/p/q/q +m/q/q

Now we can use equation 62.18:

N = −
1

4
gµνq2[−γµ/pγν + γµγnux/p+ γµx/pγν + x/pγµγν +mγµγν ]

Contracting this and using equation 47.18 and 47.19:

N =

[
−
1

2
/p(1 + 3x)m

]
q2

Thus (neglecting to write the finite term):

∆Σ(/p) = −2e2(ξ − 1)

∫
d4q

(2π)4

∫ 1

0

dx
[−1

2/p(1 + 3x) +m](1− x)q2

(q2 +D)3

Now we take a Wick Rotation and use equation 14.27:

∆Σ(/p) = −2ie2(ξ − 1)

∫ 1

0

dx
[−1

2/p(1 + 3x) +m](1− x)

8π2ε

Doing this last integral and simplifying, we have:

∆Σ(/p) =
−ie2(ξ − 1)

8π2ε
(/p+m)

So, we need to add −e2(ξ−1)
8π2ε

to Srednicki’s answer for Z1, and
−e2(ξ−1)

8π2ε
to Zm. This gives:

Z2 = 1−
e2ξ

8π2ε

Zm = 1−
e2(3 + ξ)

8π2ε

Note that if ξ = 1, we recover Srednicki’s answer, as expected.

Finally, we have to get Z1 using the vertex correction. Equation 62.40 is still good:

iV = (ie)3
(
1

i

)3 ∫
d4ℓ

(2π)4

[
γρS̃(p′ + ℓ)γµS̃(p+ ℓ)γν

]
∆̃νρ(ℓ)
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Now 62.9 is:

∆̃µν =
gµν + (ξ − 1)ℓµℓν/ℓ2

ℓ2 − iε

Srednicki did this first term, so we keep only the second term:

∆V = −ie3
∫

d4ℓ

(2π)4

[
γρ

−/p′ − /ℓ +m

(p′ + ℓ)2 +m2 − iε
γµ

−/p− /ℓ +m

(p+ ℓ)2 +m2 − iε
γν

]
(ξ − 1)ℓνℓρ
ℓ2(ℓ2 − iε)

Now if this term is to contribute, ℓ must be nonzero, so we can drop the infinitesimals in the
denominator:

∆V = −ie3(ξ − 1)

∫
d4ℓ

(2π)4

[
/ℓ
−/p′ − /ℓ +m

(p′ + ℓ)2 +m2
γµ

−/p− /ℓ +m

(p+ ℓ)2 +m2
ℓ

]
1

ℓ2ℓ2

Now we define Nµ = /ℓ(−/p′ − /ℓ +m)γµ(−/p− /ℓ +m)/ℓ. Also, we use Feynman’s formula for
the denominators. Thus:

∆V = −6ie3(ξ − 1)

∫
d4ℓ

(2π)4

∫ 1

0

dx1

∫ 1−x1

0

dx2

∫ 1−x1−x2

0

dx3×

[
Nµ

{[(p′ + ℓ)2 +m2] x1 + [(p+ ℓ)2 +m2] x2 + ℓ2x3 + ℓ2(1− x1 − x2 − x3)}
4

]

We define q = ℓ+ x1p+ x2p
′. Then:

Nµ = (/q − x1/p− x2/p
′)(−/p

′ − /q + x1/p+ x2/p
′ +m)γµ(−/p− /q + x1/p+ x2/p

′)(/q − x1/p− x2/p
′)

Similarly, we simplify the denominator to (q2 +D)4, where D is:

D = −ℓ2 − 2x1x2pp
′ − x2

1p
2 − x2

2p
′2 + p′2x1 +m2x1 + p2x2 +m2x2

We can also do the x3 integral. Thus:

∆V = −6ie3(ξ − 1)

∫
d4ℓ

(2π)4

∫ 1

0

dx1

∫ 1−x1

0

dx2
(1− x1 − x2)N

µ

(q2 +D)4

Now in the denominator, the odd terms vanish, and the terms of O(q3) or less are not
divergent. Thus Nµ = /q/qγµ/q/q is the only term that contributes to the divergence, so:

∆V = −6ie3(ξ − 1)

∫
d4ℓ

(2π)4

∫ 1

0

dx1

∫ 1−x1

0

dx2

(1− x1 − x2)/q/qγ
µ/q/q

(q2 +D)4
+ (finite)

To simplify this mess in the numerator, we use the result from problem 14.3 (I cannot resist
complaining that Srednicki requires us to use the solution to this problem without giving the
answer to that problem. Hopefully everyone kept their homework from 48 chapters ago.....).

∆V = −6ie3(ξ − 1)

∫
d4ℓ

(2π)4

∫ 1

0

dx1

∫ 1−x1

0

dx2
q4γµ(1− x1 − x2)

(q2 +D)4
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Now recall that D is loaded with x1s and x2s, so we cannot (easily) do those integrals yet.
On the other hand, we can easily do a Wick Rotation and use equation 14.27;

∆V = 6e3(ξ − 1)

∫ 1

0

dx1

∫ 1−x1

0

dx2γ
µ(1− x1 − x2)

(
2

ε
+ (const)

)
1

(4π)21!

(
1−

ε

2
D
)

We only want the divergent terms, so most of these terms can be absorbed into the (constant)
term which we neglected before. We’re left with:

∆V =
12e3(ξ − 1)

(4π)2ε
γµ

∫ 1

0

dx1

∫ 1−x1

0

dx2(1− x1 − x2)

Doing these easy integrals, we’re left with:

∆V =
e3(ξ − 1)

8π2ε
γµ

So, equation 60.39 shows that Z1 needs to include a term of − e2(ξ−1)
8π2ε

to cancel this. Adding
this to Srednicki’s solution (equation 62.50), we have:

Z1 = 1−
e2ξ

8π2ε

Just as Srednicki promised, we have Z1 = Z2 = 1 + O(e4) if ξ = 0, which is Lorenz gauge.
Better yet, Z1 = Z2 in general Rξ gauge.

Note: Notice that our answer is independent of p, p′, as it must be when we’re consider-
ing the divergent terms. We could therefore have made this a bit easier for ourselves by
setting p = p′ = 0. Perhaps I was unjustly harsh in complaining about the lack of solution
to problem 14.3(b).

Srednicki 62.3. Consider the six one-loop diagrams with four external photons
(and no external fermions). Show that, even though each diagram is logarith-
mically divergent, their sum is finite. Use gauge invariance to explain why this
must be the case.

The diagram in question is:

p1

p2

p3

p4

ℓ

ℓ− p2 ℓ+ p3

ℓ+ p3 + p4

Note that there are five permutations of this, the five permutations of 2, 3, and 4.
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We can assess the value of this. Don’t forget the overall minus sign due to the fermion
loop; further, consider all particles as outgoing for notational simplicity (it doesn’t matter
since we will take the external momenta to 0 in the next step):

iV = −

∫
d4ℓ

(2π)4
εµ1(k1)ε

ν
2(k2)ε

σ
3 (k3)ε

ρ
4(k4)

−i(−/ℓ +m)

ℓ2 +m2 − iε
(ieγν)

−i(−/ℓ + /p2 +m)

(ℓ− p2)2 +m2 − iε
(ieγµ)

−i(−/ℓ − /p3 − /p4 +m)

(ℓ+ p3 + p4)2 +m2 − iε
(ieγρ)

−i(−/ℓ − /p3 +m)

(ℓ+ p3)2 +m2 − iε
(ieγσ) + (5 perms)

Now we need the momentum in the loop to be nonzero, which means that the denominator
cannot vanish. Thus, we drop the infinitesimals. Further, we only want divergences, so we
can set the external momenta to zero. Finally, we simplify:

iV = −e4εµ1ε
ν
2ε

σ
3ε

ρ
4

∫
d4ℓ

(2π)4

(
−/ℓ +m

ℓ2 +m2

)
γν

(
−/ℓ +m

ℓ2 +m2

)
γµ

(
−/ℓ +m

ℓ2 +m2

)
γρ

(
−/ℓ +m

ℓ2 +m2

)
γσ+ (5 perms)

In the denominator we have ℓ8. The terms in the numerator of O(ℓ4) will, after four integrals,
be logarithmically divergent. The other terms will converge. Thus, we can rop the mass terms
in the numerator. Further, εµi is a number, so we can move them around:

iV = −e4
∫

d4ℓ

(2π)4
/ℓ/ε2/ℓ/ε1/ℓ/ε4/ℓ/ε3
(ℓ2 +m2)4

+ (const) + (5 perms)

Let’s drop this constant term, since we are only interested in the divergent component. Next,
let’s use the result from problem 14.3(b). (This time, I really can complain about the lack of
solution to this problem being provided in the book):

iV = −e4
∫

d4ℓ

(2π)4
ℓ4
[
γµ/ε2γ

ν/ε1γν/ε4γµ/ε3
(ℓ2 +m2)4

+
γµ/ε2γ

ν/ε1γµ/ε4γν/ε3
(ℓ2 +m2)2

+
γµ/εγµ/ε1γ

ν/ε4γν/ε3
(ℓ2 +m2)4

]
+ (5 perms)

Now we use 47.19 to simplify a few of these. As well, we use our usual trick of writing in
index notation, reordering, and then writing as the trace in order to get a trace over these.
We have:

iV = −e4
∫

d4ℓ

(2π)4
ℓ4
[
4 Tr[/ε2/ε1/ε4/ε3]

(ℓ2 +m2)4
+

γµ/ε2γ
ν/ε1γµ/ε4γν/ε3

(ℓ2 +m2)2
+

4 Tr[/ε2/ε1/ε4/ε3]

(ℓ2 +m2)4

]
+ (5 perms)

Now we need to use equation 59.1.7. (Again, it’s very annoying that this derivation wasn’t
done in the book! Fortunately, the derivation I did in chapter 59 stands on its own):

iV = −e4
∫

d4ℓ

(2π)4
ℓ4
[
8 Tr[/ε2/ε1/ε4/ε3]

(ℓ2 +m2)4
+

2 Tr[/ε1γ
ν/ε2/ε4γν/ε3]

(ℓ2 +m2)2

]
+ (5 perms)

Now we use equation 47.20:

iV = −8e4
∫

d4ℓ

(2π)4
ℓ4
[
Tr[/ε2/ε1/ε4/ε3]

(ℓ2 +m2)4
+

Tr[/ε1(ε2 · ε4)/ε3]

(ℓ2 +m2)2

]
+ (5 perms)
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Now we use equations 47.9 and 47.13:

iV = −32e4
∫

d4ℓ

(2π)4
ℓ4

(ℓ2 +m2)4
[(ε2 · ε3)(ε1 · ε4)− 2(ε2 · ε4)(ε1 · ε3) + (ε2 · ε1)(ε4 · ε3)]+ (5 perms)

Now we take the other five permutations. Don’t forget that there is a relative minus sign for
odd permutations. Then:

iV = −32e4
∫

d4ℓ

(2π)4
ℓ4

(ℓ2 +m2)4
[(ε2 · ε3)(ε1 · ε4)− 2(ε2 · ε4)(ε1 · ε3) + (ε2 · ε1)(ε4 · ε3)−

(ε2 · ε3)(ε1 · ε4) + 2(ε2 · ε1)(ε4 · ε3)− (ε2 · ε4)(ε1 · ε3)− (ε2 · ε1)(ε3 · ε4) + 2(ε2 · ε4)(ε1 · ε3)−

(ε2 · ε3)(ε4 · ε1) + (ε2 · ε1)(ε3 · ε4)− 2(ε2 · ε3)(ε1 · ε4) + (ε2 · ε4)(ε3 · ε1)− (ε2 · ε4)(ε3 · ε1)+

2(ε2 · ε3)(ε1 · ε4)− (ε2 · ε1)(ε3 · ε4) + (ε2 · ε4)(ε3 · ε1)− 2(ε2 · ε1)(ε3 · ε4) + (ε2 · ε3)(ε1 · ε4)]

Simplifying:
V = 0

So there are six terms which are individually logarithmically divergent, but they sum to zero,
as expected.

Let’s say that didn’t happen, and that some logarithmic divergence remained. Then we
would have to put a term in the Lagrangian to counter this, perhaps in one of the countert-
erms. No external momenta are involved, so the term would have to involve something with
four photon fields, ie AµAµA

νAν . This is not gauge-invariant, so this fix (the only possible
fix!) is unacceptable. It therefore follows that our QFT can hold only if the terms sum to
zero, as they indeed do.
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