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Srednicki 52.1. Compute the one-loop contributions to the anomalous dimen-
sions of m, M , Ψ, and φ.

We begin by writing the renormalized Lagrangian:

L = iZΨΨ/∂Ψ− ZmmΨΨ− 1

2
Zφ∂

µφ∂µφ−
1

2
ZMM

2φ2 + iZggφΨγ5Ψ− 1

24
Zλλφ

4

and the bare Lagrangian:

L0 = iΨ0/∂Ψ0 −m0Ψ0Ψ0 −
1

2
∂µφ0∂µφ0 −

1

2
M2

0φ
2
0 + ig0φ0Ψ0γ5Ψ0 −

1

24
λ0φ

4
0

We equate these Lagrangians term-by-term, beginning with the third and first terms. We
therefore learn:

φ0 = Z
1/2
φ φ

Ψ0 = Z
1/2
Ψ Ψ

m0 = Z−1
Ψ mZm

M0 = Z
−1/2
φ Z

1/2
M M

g0 = Z−1
Ψ Z

−1/2
φ Zgg

λ0 = Z−2
φ λZλ

Let’s start with the anomalous dimension of m. Then:

m0 = Z−1
Ψ mZm

Taking the natural logarithm of both side:

logm0 = log(Z−1
Ψ Zm) + logm

The bare fields must be independent of µ, as discusse in chapter 28. Thus,

0 =
d

d log µ
logm0 =

d

d log µ
log(Z−1

Ψ Zm) +
d

d log µ
logm
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which is:
1

m

dm

d log µ
= − d

d log µ
log(Z−1

Ψ Zm)

This left hand side is defined to be the anomalous dimension. Let us further note from
chapter 51 that:

ZΨ = 1− g2

16π2ε

Zm = 1− g2

8π2ε

Thus:

γm = − d

d log µ
log

[(
1− g2

16π2ε

)−1(
1− g2

8π2ε

)]
Now use the chain rule:

γm = − dg

d log µ

d

dg
log

[(
1− g2

16π2ε

)−1(
1− g2

8π2ε

)]
Now we want to expand these logarithms, but it’s a bit unclear where to expand it from.
The ε in the denominator makes the second term in each binomial blow up – but don’t forget
that there is also a factor of g2, which has the opposite effect. Thus, the second term is the
small one, and we expand around g2/ε = 0. Thus:

γm = − dg

d log µ

d

dg
log

[(
1 +

g2

16π2ε

)(
1− g2

8π2ε

)]
Now we use equation 52.11, and multiply:

γm =
1

2
εg

d

dg
log

[(
1 +

g2

16π2ε

)(
1− g2

8π2ε

)]
This gives:

γm =
1

2
εg

d

dg
log

[
1− g2

16π2ε
+O

(
g4

ε2

)]
and so:

γm = −εg
2

d

dg

g2

16π2ε

γm = − g2

16π2

Note: This disagrees by a minus sign from Srednicki’s solution. I hate disagreeing with
Srednicki, but I came across an independent solution by Andre Schneider from Indiana Uni-
versity; his answer agrees with mine. Further, the other parts of this problem do agree with
Srednicki’s solution.

Next we have:
M0 = Z

−1/2
φ Z

1/2
M M
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By the same logic, we obtain:

γM = −1

2

d

d log µ
log(Z−1

φ ZM)

which is:

γM = −1

2

d

d log µ
log

[(
1 +

λ

16π2ε
− g2m2

2π2M2ε

)(
1 +

g2

4π2ε

)]
Now we expand the logarithm:

γM = −1

2

d

d log µ

[
λ

16π2ε
− g2m2

2π2M2ε
+

g2

4π2ε

]
and use the chain rule:

γM = −1

2

(
d

dg

dg

d log µ
+

d

dλ

dλ

d log µ

)[
λ

16π2ε
− g2m2

2π2M2ε
+

g2

4π2ε

]
Using equation 52.11 and 52.12:

γM = −1

2

(
−1

2
εg

d

dg
− ελ d

dλ

)[
λ

16π2ε
− g2m2

2π2M2ε
+

g2

4π2ε

]
This is:

γM = −1

2

[
(−ελ)

1

16π2ε
− (−1

2
εg)

2gm2

2π2M2ε
+ (−1

2
εg)

2g

4π2ε

]
Finally:

γM =
λ

32π2
− g2m2

4π2M2
+

g2

8π2

Now for the anomalous dimension of the fields. Recall that these are defined differently;
using equation 28.36.

γφ =
1

2

d lnZφ
d lnµ

Using the chain rule, expanding the logarithm, and simplifing, as before, we have:

γφ =
1

2

d

dg

dg

d lnµ
lnZφ

γφ = −1

4
εg

d

dg

(
− g2

4π2ε

)

γφ =
g2

8π2

Similarly,

γΨ =
1

2

(
−1

2
εg

)
d

dg
log

(
1− g2

16π2ε

)
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γΨ =
g2

32π2

Srednicki 52.2. Consider the theory of problem 51.3. Compute the one-loop
contributions to the beta function for g, λ, and κ, and to the anomalous dimen-
sion of m, M , Ψ, and φ.

All we’ve changed from the chapter is the interaction Lagrangian:

L1 = ZggφΨΨ +
1

6
Zκκφ

3 +
1

24
Zλλφ

4

The other terms of the Lagrangian are the same. Further, the difference in the Dirac term
does not affect the bare field-renormalized field relationships that we found in the previous
problem. Thus, we can quote from the previous problem:

φ0 = Z
1/2
φ φ

Ψ0 = Z
1/2
Ψ Ψ

m0 = Z−1
Ψ mZm

M0 = Z
−1/2
φ Z

1/2
M M

g0 = Z−1
Ψ Z

−1/2
φ Zgg

λ0 = Z−2
φ λZλ

we do have to add one for the κ coupling:

κ0 = Z
−3/2
φ Zκκ

What about the Z factors? Comparing the Z factors in chapter 51 to those in our solution
to problem 51.3, we see that only ZM and Zm have changed.

Recall that the anomalous dimensions of the fields are just a derivative with respect to
the Z factor for the field. Since the field Z factors haven’t changed, we can quote the result
from the previous problem:

γφ =
g2

8π2

γΨ =
g2

32π2

Further, we see from the above that equations 52.1 and 52.2 still hold, and also that the Z
factors quoted therein haven’t changed. Therefore, the beta functions are the same as in the
chapter:

βg =
5g3

16π2
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βλ =
3λ2 + 8λg2 − 48g4

16π2

Now for βκ. We take:

log
(
Z
−3/2
φ Zκ

)
= log

(
1− 1

ε

(
3mg3

π2κ
− 3λ

16π2
− 3g2

8π2

))
=
∞∑
n=1

An
εn

(52.2.1)

Now we take the logarithm of our κ0-κ relation, and shift the mass dimensionality onto µ̃:

log κ0 = log(Z
−3/2
φ Zκ) + log κ+

1

2
ε log µ̃

Now we take the derivative with respect to lnµ, and recall that the bare fields must be
independent of µ. We also multiply by κ. Thus:

0 =
∞∑
n=1

(
κ
∂An
∂g

dg

d log µ
+ κ

∂An
∂λ

dλ

d log µ
+ κ

∂An
∂κ

dκ

d log µ

)
1

εn
+

dκ

d log µ
+

1

2
εκ

In a renormalizable theory, dκ/d log µ must be finite in the ε→ 0 limit. Thus we can write:

dκ

d log µ
= −1

2
εκ+ βκ (52.2.2)

This gives:

0 =
∞∑
n=1

(
κ
∂An
∂g

dg

d log µ
+ κ

∂An
∂λ

dλ

d log µ
+ κ

∂An
∂κ

dκ

d log µ

)
1

εn
+ βκ

To determine the β function, we need terms with no εs. Thus, we keep only the first term
in the sequence:

0 =

(
κ
∂A1

∂g
(−1

2
g) + κ

∂A1

∂λ
(−λ) + κ

∂A1

∂κ
(−1

2
κ)

)
+ βκ

Thus:

βκ =
gκ

2

∂A1

∂g
+ λκ

∂A1

∂λ
+
κ2

2

∂A1

∂κ

Now from (52.2.1), we have:

A1 = −3mg3

π2κ
+

3λ

16π2
+

3g2

8π2

Combining these results, we have:

βκ =
1

16π2

(
6g2κ+ 3λκ− 48mg3

)
Now for the two anomalous dimensions. We have:

m0 = Z−1
Ψ Zmm
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M0 = Z
−1/2
φ Z

1/2
M M

Taking the logarithms:
logm0 = logm+ log(Z−1

Ψ Zm)

logM0 = logM + log(Z
−1/2
φ Z

1/2
M )

Using the Z-factors from our solution to chapter 51.3:

logm0 = logm+ log

[(
1 +

g2

16π2ε

)(
1 +

g2

8π2ε

)]

logM0 = logM + log

[(
1 +

g2

8π2ε

)(
1 +

1

32π2ε

)(
κ2

M2
+ λ− 24g2m2

M2

)]
Now we take the derivative with respect to log µ; the left hand sides vanish since the bare
fields must be independent of µ. Then:

d logm

d log µ
= − d

d log µ
log

[
1 +

3g2

16π2ε

]
d logM

d log µ
= − d

d log µ
log

[
1 +

1

32π2ε

(
κ2

M2
+ λ− 24g2m2

M2
+ 4g2

)]
Now we expand the logarithm, we use the chain rule, and we use some of the derivatives.
Then:

γm = − dg

d log µ

3g

8π2ε

γM = −
(

dg

d log µ

d

dg
+

dλ

d log µ

d

dλ
+

dκ

d log µ

d

dκ

)[
1

32π2ε

(
κ2

M2
+ λ− 24g2m2

M2
+ 4g2

)]
Now we use 52.11, 52.12, and (52.2.2):

γm =
3g2

16π2

γM = − 1

32π2ε

[(
−1

2
εg

)(
48gm2

M2
+ 8g

)
+ (−ελ)(1) + (−1

2
εκ)

(
2κ

M2

)]
which is:

γM =
1

32π2

[
24g2m2

M2
+ 4g2 − λ+

κ2

M2

]
Note: We found in problem 51.3 that Srednicki calculated ZM incorrectly. Unfortunately,
that error is propagated here, causing γM to be incorrect as well. As before, his is clearly the
incorrect one, as κ has a mass dimensionality of one.

Srednicki 52.3. Consider the beta functions of equations 52.15 and 52.16.

(a) Let ρ = λ/g2 and compute dρ/ log. Express your answer in terms of g
and ρ. Explain why it is better to work with g and ρ rather than g and λ.
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Using the chain rule:
dρ

d log µ
=
∂ρ

∂g

dg

d log µ
+
∂ρ

∂λ

dλ

d log µ

dρ

d log µ
= −2λ

g3

(
−1

2
εg +

5g3

16π2

)
+

1

g2

(
−ελ+

3λ2 + 8λg2 − 48g4

16π2

)
This gives:

dρ

d log µ
=

1

16π2

[
3λ2

g2
− 48g2 − 2λ

]
Putting this in terms of g and ρ:

dρ

d log µ
=

3g2

16π2

(
ρ2 − 2

3
ρ− 16

)

This is better because it is separable : there is no way to separate g and λ, but it is possible
to separate g and ρ – and we will in fact do so below.

(b) Show that there are two fixed points, ρ∗
+ and ρ∗

−, where dρ/d log = 0, and
find their values.

Setting our result from part (a) equal to zero, we find:

ρ2 − 2

3
ρ− 16 = 0

This obviously has two solutions; finding them with the quadratic equation, we have:

ρ∗± =
1

3
±
√

145

3
= 4.34 and − 3.68

Going forward, I will use the numerical values in my solution, but of course we really mean
the “exact” answer with the radical.

(c) Suppose that, for some particular value of the renormalization scale µ, we
have ρ = 0 and g ≪≪≪ 1. What happens to ρ at much higher values of µ (but still
low enough to keep g � 1)? At much lower values of µ?

This is just high school calculus. Our graph of dρ/d log µ has a zero at ρ = 4.34 and at
ρ = −3.43. By choosing three test points, we find that dρ/d log µ < 0 between those two
points, and dρ/d log µ > 0 when ρ > 4.34 or ρ < −3.43.

At ρ = 0, then, dρ/d log µ < 0, ie a small change in log µ will have the opposite small
change in ρ. So, increasing µ by a significant amount will increase log µ by a small amount,
which will cause ρ to decrease by a small amount. By the same logic, if µ decreases by a

significant amount, ρ will increase .
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Note that g is so small in both cases that we can ignore it.

Note: It is growing tedious to say so, but Srednicki’s solution is again incorrect: he uses
the same logic, but inexplicably comes to the opposite conclusion. Fortunately Prof. Phillip
Argyres (University of Cincinatti) has an independent solution that concurs with mine, break-
ing the tie.

(d) Same question, but with an initial value of ρ = 5.

Opposite answer: as discussed in part (c), dρ/d log µ is positive in this region, and so ρ

increases as µ increases, and ρ decreases as µ decreases.

(e) Same question, but with an initial value of ρ = −5.

Same answer as part (d): dρ/d log µ is positive in this region, and so ρ increases as µ

increases, and ρ decreases as µ decreases.

(f) Find the trajectory in the (ρ, g) plane that is followed for each of the three
starting points as µ is varied up and down. Put arrows on the trajectories that
point in the direction of increasing µ.

Using the chain rule, we find:
dρ

d log µ
=
dρ

dg

dg

d log µ

which is:
dρ

dg
=

dρ

d log µ

(
dg

d log µ

)−1

Thus:
dρ

dg
=

3g2

16π2
(ρ− 4.34)(ρ+ 3.68)

16π2

5g3

Cleaning up:
dρ

dg
=

3

5g
(ρ− 4.34)(ρ+ 3.68)

Separating and integrating:∫ ρ=ρ

ρ=ρ0

dρ

(ρ− 4.34)(ρ+ 3.68)
=

3

5

∫ g=g

g=g0

1

g
dg

Doing the integral, we find:

.207813 log

[
(4.34− ρ)(3.68 + ρ0)

(3.68 + ρ)(4.34− ρ0)

]
= log

[
g

g0

]
We now bring the coefficient as an exponent, and equate the arguments of the logs. This
gives:

g

g0

=

[
(4.34− ρ)(3.68 + ρ0)

(4.34− ρ0)(3.68 + ρ)

].207813
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We plot these for the three desired points on Mathematica, attached on last page. The an-
swers for (c), (d), and (e) tell us how to draw the arrow: for ρ0 = 0, the arrow goes against
increasing ρ, ie to the left; for the other two it goes with increasing ρ, ie to the right.

(g) Explain why ρ∗
− is called an ultraviolet stable fixed point, and why ρ∗

+ is
called an infrared stable fixed point.

The answer comes from these graphs (recall that the graphs are parameterized by µ). If
we start to the left of -3.68, the value of ρ will approach -3.68, but never go beyond it, as µ
increases. This explains stable. Since the energy µ is increasing (toward, and beyond, the
ultraviolet), we call this the ultraviolet stable point.

Similarly, if we start to the right of 4.34 and decrease µ, ρ will approach 4.34, which explains
stable. Since the energy µ is decreasing (toward, and beyond, the infrared), we call this the
infrared stable point.

Note: of course, we are using these terms in the QFT way: ultraviolet means (relatively)
high energy; infrared means relatively low energy. We are making no claim that energy scales
exactly correspond to those of UV or IR radiation.
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