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Srednicki 51.1. Derive the fermion-loop correction to the scalar proagator by
working through equation 45.2, and show that it has an extra minus sign rela-
tive to the case of a scalar loop.

Note: I don’t like this problem very much because it is poorly explained. Given what we

have done up to this point, it would be reasonable to expect the diagram in question to be the

following:

⑦ ✧✦
★✥✲

✛

⑦

In fact, however, we are not going to consider the lines leading to the sources as propa-

gators; we are rather going to consider the lines themselves as external sources. This makes

sense when phrased in this way, but this seems to contradict the instructions to follow equa-

tion 45.2. In fact we must change equation 45.2 to account for our new vertex.

Our diagram is:

✧✦
★✥✲

✛

This corresponds to a vertex linking two propagators with one external φ-field. We must
then modify equation 45.2 to account for this:

Z(η, η, J) = exp

[

ig

∫

d4x φ(x)

(

i
δ

δη(x)

)(

1

i

δ

δη(x)

)]

exp

[

i

∫

d4xd4yη(x)S(x− y)η(y)

]

× exp

[

i

2

∫

d4xd4yJ(x)∆(x− y)J(y)

]

Now we need to write these exponents as a Taylor Series, and keep only those terms corre-
sponding to our diagram above. In particular, we can keep only the lowest-order term (1)
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from the final exponential, since we have no scalar propagators (the external scalar fields
do not count as propagators, as discussed above). We have two vertices and two Dirac
propagators, so we’ll keep only the second-order terms from the expansion of the first two
exponentials. This gives:

Z(η, η, J) =
(ig)2

4

∫

d4x φ(x)

(

i
δ

δη(x)

)(

1

i

δ

δη(x)

)

d4y φ(y)

(

i
δ

δη(y)

)(

1

i

δ

δη(y)

)

×(i) d4a d4b η(a)S(a− b)η(b) (i) d4c d4d η(c)S(c− d)η(d)

Now we have to be a little bit careful. Before we could just start madly differentiating stuff,
but this time we have to worry about commutation. Let’s organize, and pull the scalars to
the front.

Z(η, η, J) =
g2

4

∫

d4x d4y d4a d4b d4c d4d φ(x)φ(y)

(

δ

δη(x)

)(

δ

δη(x)

)(

δ

δη(y)

)(

δ

δη(y)

)

× η(a)S(a− b)η(b)η(c)S(c− d)η(d)

To start the differentiation process, let’s move the last two functional derivatives past the
η(a)S(a−b). We’ll get a negative sign from the anticommutation with the functional deriva-
tive. S(a− b) is made up of scalars and therefore commutes, see equation 45.4. Then:

Z(η, η, J) = −
g2

4

∫

d4x d4y d4a d4b d4c d4d φ(x)φ(y)

(

δ

δη(x)

)(

δ

δη(x)

)

× η(a)S(a− b)

(

δ

δη(y)

)(

δ

δη(y)

)

η(b)η(c)S(c− d)η(d)

Now we can take these two functional derivatives: recall that functional derivatives give delta
functions, which we integrate over. Further, we could have chosen to use these functional
derivatives on the other propagators; the result is the same up to dummy indices, so we
multiply by four (two for η and two for η):

Z(η, η, J) = −g2
∫

d4x d4y d4a d4d φ(x)φ(y)

(

δ

δη(x)

)(

δ

δη(x)

)

× η(a)S(a− y)S(y − d)η(d)

Now we can take the remaining functional derivatives:

Z(η, η, J) = −g2
∫

d4x d4y φ(x)φ(y)S(x− y)S(y − x)

Sure enough, this has a negative sign. In the case of a scalar loop, there would be no anti-
commutation, and so there would be no negative sign.

Now notice that since we started with equation 45.2, we’ve kept only one term, but we’ve
never formally associated that term with the diagram above. Now we use equation 45.6 to
do so. The extra minus sign means that we have to build our minus sign into the value of
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the diagram, ie into the Feynman Rules. But from this point, the only way forward (that
we’ve covered) is to use our Feynman rules to assess the values of the diagrams, and then
to use the Lehmann-Källen form to turn the 1PI diagrams into a propagator. This is what
Srednicki did in the chapter, so we are done. The result is equations 51.25 and 51.11.

Srednicki 51.2. Finish the computation of VY (p
′, p), imposing the condition

VY (0,0) = igγ5.

Start with 51.47:

iVY (p
′, p) =

g3

8π2

[

(

1

ε
−

1

4
−

1

2

∫

dF3 log

(

D

µ2

))

γ5 +
1

4

∫

dF3
Ñ

D

]

− Zggγ5

Now we need to determine D and Ñ given p = p′ = 0:

D = (x1 + x2)m
2 + x3M

2 = (1− x3)m
2 + x3M

2

Ñ = m2γ5

dF3 = 2

∫ 1

0

dx1dx2dx3δ(x1 + x2 + x3 − 1)

Since there is no dependence on x1 or x2, we can simplify:

∫

dF3(. . .) = 2

∫ 1

0

dx3

∫ 1−x3

0

dx2(. . .)

Doing the inner integral gives:

∫

dF3(. . .) = 2

∫ 1

0

dx3(1− x3)(. . .)

Putting all this together gives:

iVY (0, 0) =
g3

8π2

[{

1

ε
−

1

4
−

∫ 1

0

dx3(1− x3) log

(

(1− x3)m
2 + x3M

2

µ2

)}

γ5+

1

2

∫

dx3(1− x3)
m2γ5

(1− x3)m2 + x3M2

]

− Zggγ5

Reordering:

iVY (0, 0) =
g3

8π2

[{

1

ε
−

1

4
−

∫ 1

0

dx3(1− x3) log

(

m2 + x3(M
2 −m2)

µ2

)}

γ5+

1

2

∫

dx3(1− x3)
m2γ5

m2 + x3(M2 −m2)

]

− Zggγ5

Solving these integrals, we have:

iVY (0, 0) =
g3

8π2

[{

1

ε
−

1

4
− log

(

M

µ

)

+
3

4
+

m2

2(M2 −m2)
−m2 2M2 −m2

(M2 −m2)2
log

(

M

m

)}

γ5+
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m2γ5M
2 log(M/m)

(M2 −m2)2
−

m2γ5
2(M2 −m2)

]

− Zggγ5

Two of these terms cancel, another two combine:

iVY (0, 0) =
g3

8π2

[{

1

ε
+

1

2
− log

(

M

µ

)

−m2 2M2 −m2

(M2 −m2)2
log

(

M

m

)}

γ5+

m2γ5M
2 log(M/m)

(M2 −m2)2

]

− Zggγ5

Cancelling another two terms:

iVY (0, 0) =
g3

8π2
γ5

[

1

ε
+

1

2
− log

(

M

µ

)

−m2 M2 −m2

(M2 −m2)2
log

(

M

m

)]

− Zggγ5

which is:

VY (0, 0) = iZggγ5 − i
g3

8π2
γ5

[

1

ε
+

1

2
− log

(

M

µ

)

−
m2

M2 −m2
log

(

M

m

)]

Now we use 51.54:

igγ5 = iZggγ5 − i
g3

8π2
γ5

[

1

ε
+

1

2
− log

(

M

µ

)

−
m2

M2 −m2
log

(

M

m

)]

which gives:

Zg = 1 +
g2

8π2

[

1

ε
+

1

2
− log

(

M

µ

)

−
m2

M2 −m2
log

(

M

m

)]

This concurs with 51.48, a good sign. Next we have:

iVY (p
′, p) =

g3

8π2

[

(

1

ε
−

1

4
−

1

2

∫

dF3 log

(

D

µ2

))

γ5 +
1

4

∫

dF3
Ñ

D

]

−

(

1 +
g2

8π2

[

1

ε
+

1

2
− log

(

M

µ

)

−
m2

M2 −m2
log

(

M

m

)])

gγ5

Simplifying:

iVY (p
′, p) = −gγ5 +

g3

8π2

[

(

−
3

4
−

1

2

∫

dF3 log

(

D

µ2

))

γ5 +
1

4

∫

dF3
Ñ

D

]

+
g3

8π2
γ5

[

log

(

M

µ

)

+
m2

M2 −m2
log

(

M

m

)]

Now notice that in the first integral, we can write this as: −1
2

∫

dF3 logD + 1
2

∫

dF3 log µ
2.

This second term is then log µ2
∫ 1

0
(1−x)dx = log µ. This then cancels with the denominator

of the first term on the second row. Thus:

iVY (p
′, p) = −gγ5+

g3

8π2

[

(

−
3

4
−

1

2

∫

dF3 logD + log (M) +
m2

M2 −m2
log

(

M

m

))

γ5 +
1

4

∫

dF3
Ñ

D

]
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which is:

VY (p
′, p) = igγ5+

ig3

8π2

[

(

3

4
+

1

2

∫

dF3 logD − log (M)−
m2

M2 −m2
log

(

M

m

))

γ5 −
1

4

∫

dF3
Ñ

D

]

Note that
∫

dF3 const = const. Thus, we can combine two of these terms:

VY (p
′, p) = igγ5 +

ig3

8π2

[

(

3

4
+

1

2

∫

dF3 log

(

D

M2

)

−
m2

M2 −m2
log

(

M

m

))

γ5 −
1

4

∫

dF3
Ñ

D

]

which is the final answer.

Note: In Srednicki’s solutions, the first + sign on the right hand side is a negative sign.

Someone is off by a sign, I suspect it is him. He also has the γ5 matrix distributed to the Ñ
term, which is definitely incorrect.

Srednicki 51.3. Consider making φ a scalar rather than a pseudoscalar, so that
the Yukawa interaction is LY uk = gφΨΨ. In this case, renormalizability requires
us to add a term Lφ3 = 1

6
Zκκφ

3, as well as a term linear in φ to cancel tadpoles.
Find the one-loop contributions to the renormalizing Z factors for this theory in
the MS scheme.

Let’s rewrite equation 51.5 (the other equations still hold, though we must add, as men-
tioned, a Y φ term to the counterterm Lagrangian).

L1 = ZggφΨΨ+
1

6
Zκκφ

3 +
1

24
Zλλφ

4

These three terms represent the only possible interaction terms with mass dimensions ≤ 4.
Note that we added a renormlaization factor to the Yukawa interaction, as in the text.

Now we have seven renormalization factors (three above, and four in equation 51.6. Y
is a real number, as discussed on page 66; we could solve for it, but the result would not
be very interesting, and has nothing to do with the renormalizing Z factors we are asked to
find). The rest of the problem is to figure out these seven Z-factors.

Recall that we are using the MS renormalization scheme, so we need only to cancel all
the divergent terms. The finite terms do not affect the Z factors.

We start by trying to correct our scalar propagator at the one-loop level. The diagrams
are:
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k

k + ℓ

ℓ
k k k

ℓ

k

k + ℓ

ℓ
k k

X

Now we need to assess the value of each diagram.

Diagram 1

We have:

• (-1) because there is a Fermion loop

•
(

1
i

)2
S̃(/k + /ℓ)S̃(/ℓ) from the loop, along with an integral over ℓ.

• (ig)2 from the two vertices, since Zg = 1 +O(g2).

Then:

Π = −g2
∫

d4ℓ

(2π)4
S̃(/k + /ℓ)S̃(/ℓ)

We can take a trace over these propagators, just be writing in index notation and reordering.
Thus:

Π = −g2
∫

d4ℓ

(2π)4
Tr

[

S̃(/k + /ℓ)S̃(/ℓ)
]

Now we use equation 51.13. Let’s look at the numerator:

numer = Tr
[

(−/ℓ − /k +m)(−/ℓ +m)
]

Dropping those terms with an odd number of gamma matrices we have:

numer = Tr
[

/ℓ/ℓ + /k/ℓ +m2
]

which is:
numer = 4

[

−(ℓ · ℓ)− (k · ℓ) +m2
]

Simplifying:
numer = 4

[

m2 − (ℓ+ k)ℓ
]

which we define to be
numer = 4N ′

which we define in analogy to equation 51.14.

As for the denominator, we use equation 51.15. Putting all this together, we have:

iΠ = −
g2

4π4

∫

d4ℓ

∫ 1

0

dx
N ′

(q2 +D)2
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where q = ℓ+ xk and D = x(1− x)k2 +m2.

Now let’s change the integration variable ℓ → q.

iΠ = −
g2

4π4

∫ 1

0

dx d4q
N ′

(q2 +D)2
(51.3.1)

Now let’s put in our N’, in terms of q rather than ℓ:

iΠ = −
g2

4π4

∫ 1

0

dx d4q
m2 − q2 + 2xkq − x2k2 − kq + xk2

(q2 +D)2

The terms linear in q integrate to zero, so:

iΠ = −
g2

4π4

∫ 1

0

dx d4q
m2 − q2 − x2k2 + xk2

(q2 +D)2

Next let’s make g → gµ̃ε/2, shifting the mass dimensionality off of g.

iΠ = −
g2

4π4
µ̃ε

∫ 1

0

dx d4q
m2 − q2 − x2k2 + xk2

(q2 +D)2

Now we use 51.18 and 51.19, and simplify:

Π = −
g2

4π2

∫ 1

0

dx

{

(m2 − x2k2 + xk2)

(

2

ε
− log

(

D

µ2

))

+ 2D

(

2

ε
+

1

2
− log

(

D

µ2

))}

Now all we really care about in the MS scheme is the divergent part, so we can write this as:

Π = −
g2

4π2

∫ 1

0

dx

{

2(m2 − x2k2 + kx2) + 4D

ε
+ (finite)

}

Now let’s put the D in, and simplify:

Π = −
g2

4π2

∫ 1

0

dx

{

6m2 + 6xk2 − 6k2x2

ε
+ (finite)

}

Doing the integral:

Π = −
g2

4π2

{

6m2 + k2

ε
+ (finite)

}

Diagram 2

Nothing has changed from the text, so we can quote the answer (equation 51.21):

Π =
λ

(4π)2

[

1

ε
+

1

2
−

1

2
log

(

M2

µ2

)]

M2

Dropping the finite part:

Π =
λ

(4π)2

[

1

ε
+ (finite)

]

M2
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Diagram 3

This is the same diagram as in φ3 theory. However, we cannot quote the answer from
section 14, because that was done in six dimensions, but now we are working in four dimen-
sions. We can start from scratch, but everything we did up to equation (51.3.1) still holds
with the following modifications:

• There is no negative sign, since there is no fermion loop

• The vertex factor is iκ

• There is a symmetry factor of 2

• g → gµ̃ε/2

This gives:

iΠ =
κ2µ̃ε

2

∫ 1

0

dx
d4q

(2π)4
1

(q2 +D)2

Using equation 51.18:

Π =
κ2

2

∫ 1

0

dx
1

16π2

(

2

ε
− log

(

D

µ2

))

This is:

Π =
κ2

16π2ε
+ (finite)

Diagram 4

This is just a vertex, so we can take the value straight from the chapter 45 Feynman Rules
(or more recently, equation 51.22).

Π = −(Zφ − 1)k2 − (ZM − 1)M2

Now we sum all these self-energies, and choose the Zs to cancel the infinite parts.

−(Zφ − 1)k2 −
g2k2

4π2ε
= 0

which implies:

Zφ = 1−
g2

4π2ε

Similarly:

−(ZM − 1)M2 +
κ2

16π2ε
+

λ

16π2ε
M2 −

g26m2

4π2ε
= 0

Dividing through by M2:

−(ZM − 1) +
κ2

16π2εM2
+

λ

16π2ε
−

g26m2

4π2M2ε
= 0
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Solving this:

ZM = 1 +
1

16π2ε

[

κ2

M2
+ λ−

24g2m2

M2

]

Note: this is different from Srednicki’s solution, but it agrees with an independent solution

from Andre Schneider at the University of Indiana. Moreover, Srenicki’s solution is neces-

sarily incorrect because the mass φ3 vertex forces κ to have a mass dimension of 1; Srednicki’s

solution therefore adds a term with mass dimension = 2 to terms of mass dimension = 0,

which is obviously wrong.

Now for the fermion propagator. The diagrams are:

k

k + ℓ

ℓ
k k

X

Diagram 2

Using the counterterm Lagrangian, we change the /∂ to i/k and rub out the fields, we get
the vertex factor for the counterterm vertex (don’t forget to multiply by i, as with all vertex
factors) as:

iΠ = −i(ZΨ − 1)/k − i(Zm − 1)m

Then:
Π = −(ZΨ − 1)/k + (Zm − 1)m

Diagram 1

Diagram one has two vertices, two propagators, and an integral over the loop; the result
is:

iΠ = (ig)2
(

1

i

)2 ∫
d4ℓ

(2π)4
S̃(/k + /ℓ)∆̃(ℓ2)

which is:

iΠ = g2
∫

d4ℓ

(2π)4
−/k − /ℓ +m

[(k + ℓ)2 +m2][ℓ2 +m2]

Using 51.15 to combine these denominators:

iΠ = g2
∫

d4ℓ

(2π)4

∫ 1

0

dx
−/k − /ℓ +m

(q2 +D)2

where q = ℓ+ xk and D = x(1− x)k2 +m2.

Now we change the integration variable ℓ → q. Thus:

iΠ = g2
∫

d4q

(2π)4

∫ 1

0

dx
−/k − /q + x/k +m

(q2 +D)2
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We can drop the terms in the numerator that are odd in q, since those integrate to zero.
Further, we take g → gµε/2, shifting the mass dimensionality onto µ̃. Then:

iΠ = g2µε

∫

d4q

(2π)4

∫ 1

0

dx
m+ /k(x− 1)

(q2 +D)2

We use equation 51.18 to do the q-integral:

iΠ =
ig2

16π2

∫ 1

0

dx [m+ /k(x− 1)]

[

2

ε
− log

(

D

µ2

)]

Doing the x integral:

iΠ =
ig2

16π2

[

m−
/k

2

] [

2

ε
− log

(

D

µ2

)]

This is:

Π =
g2

8π2ε

(

m−
/k

2

)

+ (finite)

Combining these two diagrams, and requiring the m terms to cancel, we have:

1

ε

g2

8π2
m− (Zm − 1)m = 0

Thus:

Zm = 1 +
g2

8π2ε

and similarly with the /k terms:

−(ZΨ − 1)/k −
/k

2

1

ε

g2

8π2
= 0

Thus:

ZΨ = 1−
g2

16π2ε

Now we consider the correction to the φΨΨ vertex. The diagrams are:

k

p

p′ k p

p′ + ℓ

ℓ

p′

p+ ℓ

k p

p′ + ℓ

ℓ

p′

p+ ℓ

Assessing the values of these diagrams, we have:
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Diagram 1

The only contribution comes from the vertex, so:

iΠ = iZgg

so:
Π = Zgg

Diagram 3

Note that there is only one fermion propagator, so the numerator will at most have terms
of only O(ℓ). There are three total propagators, so the denominator will be of O(ℓ6). Thus,
this integral goes as

∫

dℓ4 1
ℓ5
. Even after four integrals, this will remain convergent assuming

reasonable boundary conditions. This therefore does not contribute to the Z-factors in this
renormaliation scheme.

Diagram 2

Assessing the value of this diagram, we have:

iΠ = (ig)3
(

1

i

)3 ∫
d4ℓ

(2π)4
S̃(/p

′ + /ℓ)S̃(/p+ /ℓ)∆(ℓ2)

Writing these propagators:

iΠ = g3
∫

d4ℓ

(2π)4
(−/p′ − /ℓ +m)(−/p− /ℓ +m)

((p+ ℓ)2 +m2)) ((p+ ℓ)2 +m2) (ℓ2M2)

Comparing this to equation 51.41, only the definition of N has changed. Thus:

iΠ = g3
∫

d4ℓ

(2π)4

∫

dF3
N

(q2 +D)3

We could calculate N, but this is a lot of messy algebra. Recall that we only care about the
divergent part. By equation 14.27, the only divergent part has a q2 in the numerator. We
have:

N ∝ /ℓ
2
∝ /q

2 = −q2

Also, we shift the mass dimensionality onto g: g → gµε/2. This gives:

iΠ = g3µε/2

∫

d4ℓ

(2π)4

∫

dF3
q2

(q2 +D)3
+ (finite)

Now we use 14.27 to solve the integral (recall that the dimensionality is 4 − ε).. We also
perform a Wick Rotation, which adds a factor of i. This gives:

iΠ = −
ig3

(4π)2

∫

dF3Γ
(ε

2

)

+ (finite)
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which is:

Π = −
g3

8π2ε

∫

dF3 + (finite)

Using equation 14.11, we have:

Π = −
g3

8π2ε
+ (finite)

Putting these together, we have:

iVY = iZgg −
g3

8π2ε
+ (finite)

Choosing Zg to absorb this divergence, we achieve, up to order g2:

Zg = 1 +
g2

8π2ε

Next we turn to the φ3 vertex. The diagrams are:

p1

p3

p2

p1
p3

p2
ℓ

ℓ+ p2

ℓ− p1

p1
p3

p2
ℓ

ℓ+ p2

ℓ− p1

p1 p3

p2
ℓ

ℓ− p1

Diagram 1

The only contribution comes from the vertex factor. Dropping the i, we have:

Π = Zκκ

Diagram 2

This is the same diagram as in φ3 theory. Since we are now working in four dimensions, we
cannot simply quote the result from section 16. We can, however, use equation 16.6:

Π = g2
∫

dF3

∫

ddq

(2π)d
1

(q2 +D)3
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Equation 16.7 gives:

Π = g2
∫

dF3

Γ(3− d
2
)

2(4π)d/2
D−(3−d/2)

Now take d = 4− ε:

Π = g2
∫

dF3

Γ
(

1 + ε
2

)

2(4π)2
D−1+ε/2

Taking ε → 0:

Π = g2
∫

dF3
1

2(4π)2
D−1

Now we use 16.5:

Π =
g2

2(4π)2

∫

dF3

[

x3x1k
2
1 + x3x2k

2
2 + x1x2k

2
3 +m2

]

−1

Now we can set the external momenta equal to zero, since they don’t contribute to the
divergent part (actually we can set all of this equal to zero, since it is already manifestly
convergent, but let’s stick with our usual set of tricks):

Π =
g2

32π2m2

Dropping the convergent part, we have:

Π = (finite)

Diagram 3

Here we have to start from scratch. We have:

iΠ = (−1)(ig)3
(

1

i

)3 ∫
d4ℓ

(2π)4
S̃(ℓ)S̃(p2 + ℓ)S̃(ℓ− p1)

where the negative sign is necessary because we have a fermion loop. Expanding this:

iΠ = −g3
∫

d4ℓ

(2π)4
(−/ℓ +m)(− /p2 − /ℓ +m)(−/ℓ + /p1 +m)

[(ℓ− p1)2 +m2][(p2 + ℓ)2 +m2][ℓ2 +m2]

Consider the numerator. We set the external momenta to zero. The terms odd in ℓ integrate
to zero, so we have:

numer = 3m/ℓ/ℓ +m3

Using our usual trick (Feynman’s formula), we can combine the denominator. Then:

iΠ = −g3
∫

d4ℓ

(2π)4

∫ 1

0

dF3
−12mℓ2 +m3

(q2 +D)3

Switching our integration variable to q:

iΠ = −g3
∫

d4q

(2π)4

∫ 1

0

dF3
−12mq2 + (finite term of O(q0))

(q2 +D)3

13



The constant term is of O(q−6), which will clearly be convergent. Then:

iΠ = 12mg3
∫

d4q

(2π)4

∫ 1

0

dF3
q2

(q2 +D)3

Now we take a Wick Rotation and use equation 14.27:

iΠ = 12mg3i

∫ 1

0

dF3

Γ
(

ε
2

)

Γ(3)

(4π)2Γ(3)Γ(2)
D−ε/2

Keeping the divergent terms only, we have:

iΠ = 12mg3i

∫ 1

0

dF3
1

(4π)2

[

2

ε
+ (finite)

]

which is:

Π =
24mg3

16π2ε

∫ 1

0

dF3 + (finite)

Doing the integral:

Π =
3mg3

π2ε
+ (finite)

Diagram 4

There are actually three such diagrams: due to the two different vertices, the choice of
which vertex goes on the left is a substantial difference. Due to the loop, each diagram has a
symmetry factor of two. Swapping the two external propagators on the right does not yield
a substantively different diagram. Thus, we assess the values of these diagrams at:

iΠ =
3!

2
(iκ)(−iλ)

(

1

i

)2 ∫
d4ℓ

(2π)4
1

(ℓ2 +M2)((ℓ+ p1)2 +M2)

Our usual manipulations give:

iΠ = −3κλ

∫

d4ℓ

(2π)4

∫ 1

0

1

(q2 +D)2
dF3

Using equation 51.18, we have:

iΠ = −
3iκλ

(4π)2

∫

dF3

[

2

ε
− log

(

D

µ2

)]

which is:

Π = −
3κλ

16π2

[

1

ε
+ (finite)

]

Now we combine these:

Zκκ+
3mg3

π2ε
−

3κλ

16π2ε
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We want Zκ to absorb these divergences only. These give the O(ε−1) contributions to Zκ:

Zκ = 1 +
1

ε

(

3λ

16π2
−

3mg3

π2κ

)

Finally, we have the φ4 vertex. The diagrams are:

p1

p2

p3

p4

p1

p2

p3

p4

ℓ− p2

ℓ

ℓ+ p4 + p3

ℓ+ p4

p1

p2

p3

p4

ℓ− p2

ℓ

ℓ+ p4 + p3

ℓ+ p4

In addition, there are the diagrams of figure 31.5.

Diagram 1

Only the vertex factor contributes.
Π = −Zλλ

Diagram 3

Fortunately, this is exactly the same diagram that was considered in the chapter. The
factors of γ5 in the numerator are different, but since we only care about determining the
divergent part – which Srednicki tells us is ∝ ℓ4, none of this matters. We could introduce
a negative sign because we do not need to anticommute γ5 across S̃, but since this happens
twice, any effect will be lost. We can therefore quote Srednicki’s result, equation 51.50:

Π = −
3g4

π2

(

1

ε
+ (finite)

)

Diagrams of figure 31.5

Fortunately for us, φ4 theory naturally uses four dimensions, and so we can quote equa-
tion 51.51:

Π =
3λ2

16π2

(

1

ε
+ (finite)

)

Diagram 2

Here we will have terms of O(ℓ0) in the numerator since these are all scalars, but of O(ℓ8)
in the denominator. Even after four integrals, this will be convergent. Then:

Π = (finite)
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We combine these in the usual way:

Π = −Zλλ−
3g4

πε
+

3λ2

16π2ε

Choosing the contributions to Zλ at O(ε−1) to cancel these divergences, we have:

Zλ = 1 +
1

ε

(

3λ

16π2
−

3g4

λπ2

)
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