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Srednicki 50.1. Consider a bra-ket notation for twistors,

|p] = u−(~p) = v+(~p)

|p〉 = u+(~p) = v−(~p)

[p| = u+(~p) = v−(~p)

〈p| = u−(~p) = v+(~p)

We then have
〈k||p〉 = 〈kp〉

[k||p] = [kp]

〈k||p] = 0

[k||p〉 = 0

(a) Show that
−/p = |p〉[p|+ |p]〈p|

where p is any massless four-momentum.

Let’s write this as:

−/p =
1

2
(1 + γ5 + 1− γ5) (−/p)

Then:

−/p =
1

2
(1 + γ5)(−/p) +

1

2
(1− γ5)(−/p)

Using 50.1:
−/p = u+(~p)u+(~p) + u−(~p)u−(~p)

which is:
−/p = |p〉[p|+ |p]〈p|

(b) Use this notation to rederive equations 50.28-50.30

We have:
u+(~k

′)(−/k)u+(~k) = [k′| [|k〉[k|+ |k]〈k|] |k〉
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Distributing:
u+(~p

′)(−/k)u+(~p) = [p′||k〉[k||p〉+ [p′||k]〈k||p〉
Using 50.34:

u+(~p
′)(−/k)u+(~p) = [p′k]〈kp〉

Similarly:
u−(~k

′)(−/k)u−(~k) = 〈p′| [|k〉[k|+ |k]〈k|] |p]
Distributing:

u−(~p
′)(−/k)u−(~p) = 〈p′||k〉[k||p] + 〈p′||k]〈k||p]

Using 50.34:

u−(~p
′)(−/k)u−(~p) = 〈p′k〉[kp]

And:
u−(~k

′)(−/k)u+(~k) = 〈p′| [|k〉[k|+ |k]〈k|] |p〉
Distributing:

u−(~p
′)(−/k)u+(~p) = 〈p′||k〉[k||p〉+ 〈p′||k]〈k||p〉

Using 50.34:

u−(~p
′)(−/k)u+(~p) = 0

Finally:
u+(~k

′)(−/k)u−(~k) = [k′| [|k〉[k|+ |k]〈k|] |k]
Distributing:

u+(~p
′)(−/k)u−(~p) = [p′||k〉[k||p] + [p′||k]〈k||p]

Using 50.34:

u+(~p
′)(−/k)u−(~p) = 0

Srednicki 50.2. (a) Use equations 50.9 and 50.15 to verify equation 50.12.

Using 50.9 and 50.15, 50.12 becomes:
(

−p0 + p3 p1 − ip2

p1 + ip2 −p0 − p3

)

?
= −

√
2ω

(

− sin(θ/2)e−iφ

cos(θ/2)

)√
2ω

(

− sin(θ/2)eiφ cos(θ/2)
)

Multiplying:
(

−p0 + p3 p1 − ip2

p1 + ip2 −p0 − p3

)

?
= −2ω

(

sin2 θ
2

− sin θ
2
cos θ

2
e−iφ

− sin θ
2
cos θ

2
eiφ cos2 θ

2

)

Using half-angle identities:
(

−p0 + p3 p1 − ip2

p1 + ip2 −p0 − p3

)

?
= −

(

ω − ω cos θ −ω sin θe−iφ

−ω sin θeiφ ω + ω cos θ

)

Using Euler’s formula:
(

−p0 + p3 p1 − ip2

p1 + ip2 −p0 − p3

)

X
=

(

−ω + ω cos θ ω sin θ cosφ− iω sin θ sinφ
ω sin θ cosφ+ iω sin θ sinφ −ω − ω cos θ

)
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(b) Let the three-momentum ~p be in the +ẑ direction. Use equation 38.12
to compute u±(~p) explicitly in the massless limit (corresponding to the limit
η → ∞, where sinh η = |~p|/m). Verify that, when θ = 0, your results agree with
equations 50.8, 50.9, and 50.13.

Equation 38.12 gives:

us(~p) = exp
[

iη~p · ~K
]

us(0)

Taking ~p = ẑ,

us(ẑ) = exp

(

iη
i

2
γ3γ0

)

us(0)

This simplifies to:

us(ẑ) = exp
[

−η

2
diag(1,−1,−1, 1)

]

us(0)

Now we write the series expansion of the exponential. Note that the matrix squared gives
the identity. Then:

us(ẑ) =
[

cosh
(η

2

)

+ sinh
(η

2

)

diag(−1, 1, 1,−1)
]

us(0)

Clearly in the low-mass limit, this diverges. This is not very interesting, so let’s follow this
for a while and see if we can get something finite. First, notice that cosh2 x − sinh2 x = 1;
in the low-mass limit, the 1 is inconsequential, and cosh x = sinh x. Then:

us(ẑ) = sinh
(η

2

)

[1 + diag(−1, 1, 1,−1)] us(0)

which is:
us(ẑ) = sinh

(η

2

)

diag(0, 2, 2, 0)us(0)

Now we have sinh η
2
= sinh

(

sinh−1(p/m)
2

)

. Now we use a rather obscure identity:

sinh
η

2
=

p/2

√
2

√

√

(

p
m

)2
+ 1 + 1

→
√

p

2m

where the arrow represents the massless limit. Then:

us(ẑ) =

√

p

2m
diag(0, 2, 2, 0)us(0)

and so:

us(ẑ) =

√

2p

m
diag(0, 1, 1, 0)us(0)

Using 38.6, and p = E for a massless particle:

u+(ẑ) =
√
2E









0
0
1
0








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Similarly:

u−(ẑ) =
√
2E









0
1
0
0









This manifestly agrees with 50.8, 50.9 and 50.13 for θ = 0.

Srednicki 50.3. Prove the Schouten identity,

〈pq〉〈rs〉+ 〈pr〉〈sq〉+ 〈ps〉〈qr〉 = 0

See 50.13 and 50.22; each label corresponds to one twistor, and each twistor corresponds
(by 50.8-50.9) to two components. Therefore, there are at most two linearly independent
twistors. It is therefore not possible to have three anti-symmetric twistors, and the entire
term must vanish.

All we have to do is show that the left hand side is indeed anti-symmetric. But this is
trivial; swapping any two indices and using 50.21 gives the same thing with a negative sign.

Srenicki 50.4. Show that

〈pq〉[qr]〈rs〉[sp] = Tr
1

2
(1− γ5)/p/q/r/s

and evaluate the right hand side.

We begin with equation 50.1, then use 50.33:

−1

2
(1− γ5)/p = u−(~p)u−(~p) = |p]〈p|

Now we multiply on the right by −/q, and use 50.35:

1

2
(1− γ5)/p/q = |p]〈p| (|q〉[q|+ |q]〈q|)

Using 50.34:
1

2
(1− γ5)/p/q = |p]〈pq〉[q|

Now we do the same thing with /r and /s. Then:

1

2
(1− γ5)/p/q/r/s = |p]〈pq〉[qr]〈rs〉[s

Taking the trace gives:

Tr
1

2
(1− γ5)/p/q/r/s = Tr |p]〈pq〉[qr]〈rs〉[s
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Now we use the cyclic property of the trace. This yields scalars on the right hand side, and
so the trace drops out:

Tr
1

2
(1− γ5)/p/q/r/s = 〈pq〉[qr]〈rs〉[sp]

Rewriting slightly:

〈pq〉[qr]〈rs〉[sp] = Tr
1

2
(1− γ5)/p/q/r/s

as expected. Now we rewrite the trace so that we can solve it:

〈pq〉[qr]〈rs〉[sp] = 1

2
Tr /p/q/r/s −

1

2
Tr γ5/p/q/r/s

and use 47.13 and 47.17:

〈pq〉[qr]〈rs〉[sp] = 2 ((ps)(qr)− (pr)(qs) + (pq)(rs)) + 2ipαqβrγsδε
αβγδ

Srednicki 50.5. (a) Prove the useful identities

〈p|γµ|k] = [k|γµ|p〉

〈p|γµ|k]∗ = 〈k|γµ|p]

〈p|γµ|p] = 2pµ

〈p|γµ|k〉 = 0

[p|γµ|k] = 0

As far as I know, the only way to solve this is to multiply through by an arbitrary massless
four-vector, we’ll call it qµ. Note that we have to be careful not to lose generality: for any
particular qµ, or if p

µ were orthogonal to alll qµs, then we would have an issue. Fortunately,
there exists no pµ that is orthogonal to all qµ, and so we have:

〈p|/q|k] ?
= [k|/q|p〉

(

〈p|/q|k]
)

∗ ?
= 〈k|/q|p]

〈p|/q|p] ?
= 2(p · q)

〈p|/q|k〉 ?
= 0

[p|/q|k] ?
= 0

Now we use 50.35:
〈p| (|q〉[q|+ |q]〈q|) |k] ?

= [k| (|q〉[q|+ |q]〈q|) |p〉

(〈p| (|q〉[q|+ |q]〈q|) |k])∗ ?
= 〈k| (|q〉[q|+ |q]〈q|) |p]

〈p| (|q〉[q|+ |q]〈q|) |p] ?
= 2(p · q)

〈p| (|q〉[q|+ |q]〈q|) |k〉 ?
= 0
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[p| (|q〉[q|+ |q]〈q|) |k] ?
= 0

Many of these terms vanish by 50.34:

〈pq〉[qk] ?
= [kq]〈qp〉

(〈pq〉[qk])∗ ?
= 〈kq〉[qp]

〈pq〉[qp] ?
= 2(p · q)

0
X
= 0

0
X
= 0

Now we use 50.17 and 50.21:
〈pq〉[qk] X

= [qk]〈pq〉

(〈pq〉[qk])∗ ?
= 〈qk〉[pq]

〈pq〉[qp] ?
= 2(p · q)

0
X
= 0

0
X
= 0

As for the remaining equalities, the second is true by 50.20 and the third is true by 50.24.

(b) Extend the last two identities of part (a): show that the product of an
odd number of gamma matrices sandwiched between either 〈p| and |k〉 or [p|
and |k] vanishes. Also show that the product of an even number of gamma ma-
trices between either 〈p| and |k〉 vanishes.

As before, we multiply each gamma matrix by an arbitrary massless four vector, then use
equation 50.35. Each use of 50.35 will change the open grouping symbol on the left from a
bracket to a 〈, or vice versa. If the grouping symbols start out compatible, equation 50.35
must be used an even number of times to maintain this compatibility; an odd number of
applications of 50.35 will lead to [〉 or 〈], which vanishes. Similarly, if the grouping symbols
start out incompatible, equation 50.35 must be used an odd number of times to rectify this;
using it an even number of times will again lead to a vanishing term.

(c) Prove the Fierz Identities

−
1

2
〈p|γµ|q]γ

µ = |q]〈p|+ |p〉[q|

−
1

2
[p|γµ|q〉γ

µ = |q〉[p|+ |p]〈q|

Now take the matrix element of equation 50.44 between 〈r| and |s] to get an-
other useful form of the Fierz identity:
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Let’s do both terms simultaneously. We start by using 50.33:

−1

2
〈p|γµ|q]γµ = −1

2
u−(~p)γµu−(~q)γ

µ

−1

2
[p|γµ|q〉γµ = −1

2
u+(~p)γµu+(~q)γ

µ

Now we use 50.6, 50.8, 50.10, 50.13, and 50.14 to turn these spinors into twistors:

−1

2
〈p|γµ|q]γµ = −1

2

(

0 φ∗

ȧ(~p)
)

(

0 σȧa
µ

σȧa
µ 0

)(

φa(~q)
0

)

γµ

−1

2
[p|γµ|q〉γµ = −1

2

(

φa(~p) 0
)

(

0 σȧa
µ

σȧa
µ 0

)(

0
φ∗ȧ(~q)

)

γµ

Now we multiply:

−1

2
〈p|γµ|q]γµ = −1

2
φ∗

ȧ(~p)σ
ȧa
µ φa(~q)γ

µ

−1

2
[p|γµ|q〉γµ = −1

2
φa(~p)σµaȧφ

∗ȧ(~q)γµ

These twistors commute, so we can write this as:

−1

2
〈p|γµ|q]γµ = −1

2
φ∗

ȧ(~p)φa(~q)

(

0 σȧa
µ σµ

bḃ

σȧa
µ σµċc 0

)

−1

2
[p|γµ|q〉γµ = −1

2
φa(~p)φ∗ȧ(~q)

(

0 σµaȧσ
µ

bḃ

σµaȧσ
µċc 0

)

Now we use 35.19 and 35.4, using the spinor indices to raise and lower the indexes. The
result is:

−1

2
〈p|γµ|q]γµ =

(

0 φ∗

ḃ
(~p)φb(~q)

φ∗ċ(~p)φc(~q) 0

)

−1

2
[p|γµ|q〉γµ =

(

0 φb(~p)φ
∗

ḃ
(~q)

φc(~p)φ∗ċ(~q) 0

)

Now we can split up this result into spinors:

−1

2
〈p|γµ|q]γµ =

(

φb(~q)
0

)

(

0 φ∗

ḃ
(~p)

)

+

(

0
φ∗ċ(~p)

)

(

φc(~q) 0
)

−1

2
[p|γµ|q〉γµ =

(

0
φ∗ċ(~q)

)

(

φc(~p) 0
)

+

(

φb(~p)
0

)

(

0 φ∗

ḃ
(~q)

)

Now we use 50.8, 50.10, 50.13 and 50.14 again:

−1

2
〈p|γµ|q]γµ = u−(~q)u−(~p) + u+(~p)u+(~q)

−1

2
[p|γµ|q〉γµ = u+(~q)u+(~p) + u−(~p)u−(~q)
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And finally, 50.33:

−1

2
〈p|γµ|q]γµ = |q]〈p|+ |p〉[q|

−1

2
[p|γµ|q〉γµ = |q〉[p|+ |p]〈q|

as expected.

Finally, it is trivial to take this last equation between 〈r| and |s] as indicated:

−1

2
〈r|[p|γµ|q〉γµ|s] = 〈r||q〉[p||s] + 〈r||p]〈q||s]

On the left hand side, [p|γµ|q〉 is a constant, so we bring it to the front. On the right side,
we use 50.34:

−1

2
[p|γµ|q〉〈r|γµ|s] = 〈rq〉[ps]

Now using 50.21, we have:
[p|γµ|q〉〈r|γµ|s] = 2〈qr〉[ps]

as expected.
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