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Srednicki 48.1. The tedium of these calculations is greatly alleviated by mak-
ing use of a symbolic manipulation program like Mathematica or Maple. One
approach is brute force: compute 4 × 4 matrices like /p in the CM frame, and
take their products and traces. If you are familiar with a symbolic-manipulation
program, write one that does this. See if you can verify equations 48.26-48.29.

The key point is to calculate /pi. Once we have that, it is a trivial matter to tell your
favorite program to do the multiplication and take the trace; I won’t even bother to do that
here.

We have /pi = pµγµ. The γ matrices are given in the text, I’ll write them out explicitely
here:

γ0 =









0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0









γ1 =









0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0









γ2 =









0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0









γ3 =









0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0









The other thing we need is the ps. Let’s consider the case of collisions, since we are trying
to reproduce equations 48.26-29. Each initial particle has a four-momentum given by:

pi = (Ei, 0, 0, pi)

Each final particle has a momentum given by:

pi′ = (Ei′ , pi′ sin θ, 0, pi′ cos θ)

The magnitude of the three-momentum pi is given by equation 11.2 or 11.3. The magnitude
of the energy Ei is constrained by the requirement that the magnitude of one of these vectors
must be −m2. Thus:

p1 =

[

s+m2
1 −m2

2

2
√
s

, 0, 0,

√

s− 2(m2
1 +m2

2) + (m2
1 −m2

2)
2

2s

]
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p2 =

[

s−m2
1 +m2

2

2
√
s

, 0, 0,−
√

s− 2(m2
1 +m2

2) + (m2
1 −m2

2)
2

2s

]

p3 =

[

s+m2
3 −m2

4

2
√
s

, sin θ

√

s− 2(m2
3 +m2

4) + (m2
3 −m2

4)
2

2s
, 0, cos θ

√

s− 2(m2
3 +m2

4) + (m2
3 −m2

4)
2

2s

]

p4 =

[

s−m2
3 +m2

4

2
√
s

,− sin θ

√

s− 2(m2
3 +m2

4) + (m2
3 −m2

4)
2

2s
, 0,− cos θ

√

s− 2(m2
3 +m2

4) + (m2
3 −m2

4)
2

2s

]

Now we just have to do the dot product (on the computer). Notice that we’re dotting
a vector of numbers by a vector of matrices: we therefore have to multiply the vector of
numbers by the identity. Then, we have:

/pi = −(pi0I)γ
0 + (pi1I)γ

1 + (pi2I)γ
2 + (pi3I)γ

3

which is the slash, as promised. From here it is trivial to have the computer do the multi-
plication and traces.

Srednicki 48.2. Compute 〈|T |2〉 for e+e− → φφ. You should find that your
result is the same as that for e−φ → e−φ, but with s ↔ t, and an extra factor
of minus one-half. This relationship is known as crossing symmetry. There is
an overall minus sign for each fermion that is moved from the initial to the final
state.

Srednicki started this one with equation 45.23:

iT =
1

i
(ig)2vs2(~p2)

[

−/p
1
+ /k

′
1 +m

−t+m2
+

−/p
1
+ /k

′
2 +m

−u+m2

]

us1(~p1)

We can write this as:

T = g2vs2(~p2)

[

−/p
1
+ /k

′
1 +m

−t+m2
+

−/p
1
+ /k

′
2 +m

−u+m2

]

us1(~p1)

We can use the Dirac Equation to simplify this further: −/pu = mu. Thus:

T = g2vs2(~p2)

[

/k
′
1 + 2m

−t+m2
+

/k
′
2 + 2m

−u+m2

]

us1(~p1)

Now we need the conjugate:

T ∗ = g2us1(~p1)

[

/k
′
1 + 2m

−t+m2
+

/k
′
2 + 2m

−u+m2

]

vs2(~p2)

Everything in the large bracketed term is a constant that will be unaffected by the barring
– except for the /k = −k0γ0 + kiγi terms. These are also constants except for the gamma
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matrices; however, we know from equation 38.15 that the gamma matrices are also unaffected
by the barring. Thus:

T ∗ = g2us1(~p1)

[

/k
′
1 + 2m

−t+m2
+

/k
′
2 + 2m

−u+m2

]

vs2(~p2)

Now we are ready to evaluate |T |2 = T T ∗:

|T |2 = g4vs2(~p2)

[

/k
′
1 + 2m

−t+m2
+

/k
′
2 + 2m

−u+m2

]

us1(~p1)us1(~p1)

[

/k
′
1 + 2m

−t+m2
+

/k
′
2 + 2m

−u+m2

]

vs2(~p2)

Now let’s write the last term in index notation (implied sum over α and β, as usual):

|T |2 = g4vs2(~p2)

[

/k
′
1 + 2m

−t+m2
+

/k
′
2 + 2m

−u+m2

]

us1(~p1)us1(~p1)α

[

/k
′
1 + 2m

−t+m2
+

/k
′
2 + 2m

−u+m2

]

αβ

vs2(~p2)β

Now an individual component of the u spinor on the right hand side is just a number; this
will commute with everything. Let’s write it at the beginning of the equation:

|T |2 = g4vs2(~p2)βvs2(~p2)

[

/k
′
1 + 2m

−t+m2
+

/k
′
2 + 2m

−u+m2

]

us1(~p1)us1(~p1)α

[

/k
′
1 + 2m

−t+m2
+

/k
′
2 + 2m

−u+m2

]

αβ

Now our implied sum over β leads to a trace (we also drop the index notation on α, no longer
needed):

|T |2 = g4 Tr

{

vs2(~p2)vs2(~p2)

[

/k
′
1 + 2m

−t+m2
+

/k
′
2 + 2m

−u+m2

]

us1(~p1)us1(~p1)

[

/k
′
1 + 2m

−t+m2
+

/k
′
2 + 2m

−u+m2

]}

Now we need to sum over the final states (s’) and averaged over the initial states (s). There
are two initial states for two initial particles, so we have to sum and divide by four. Then:

〈|T |2〉 = g4

4

∑

s1,s2

Tr

{

vs2(~p2)vs2(~p2)

[

/k
′
1 + 2m

−t+m2
+

/k
′
2 + 2m

−u+m2

]

us1(~p1)us1(~p1)

[

/k
′
1 + 2m

−t+m2
+

/k
′
2 + 2m

−u+m2

]}

Now we can use 46.8 and 46.13 to evaluate these sums:

〈|T |2〉 = g4

4
Tr

{

(−/p
2
−m)

[

/k
′
1 + 2m

−t+m2
+

/k
′
2 + 2m

−u+m2

]

(−/p
1
+m)

[

/k
′
1 + 2m

−t+m2
+

/k
′
2 + 2m

−u+m2

]}

This is the correct answer, but recall that we have to simplify this into constants and Man-
delstam variables. This is going to be tedious. First we break this into the 16 individual
terms:

〈|T |2〉 = g4

4
Tr

{

(−/p
2
)
/k
′
1 + 2m

−t+m2
(−/p

1
)
/k
′
1 + 2m

−t+m2
+ (−/p

2
)
/k
′
1 + 2m

−t+m2
(−/p

1
)
/k
′
2 + 2m

−u+m2
+

(−/p
2
)
/k
′
1 + 2m

−t+m2
(m)

/k
′
1 + 2m

−t+m2
+ (−/p

2
)
/k
′
1 + 2m

−t+m2
(m)

/k
′
2 + 2m

−u+m2
+ (−/p

2
)
/k
′
2 + 2m

−u+m2
(−/p

1
)
/k
′
1 + 2m

−t+m2
+
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(−/p
2
)
/k
′
2 + 2m

−u+m2
(−/p

1
)
/k
′
2 + 2m

−u+m2
+(−/p

2
)
/k
′
2 + 2m

−u+m2
(m)

−/k
′
1 + 2m

−t+m2
+(−/p

2
)
/k
′
2 + 2m

−u+m2
(m)

/k
′
2 + 2m

−u+m2
+

(−m)
/k
′
1 + 2m

−t+m2
(−/p

1
)
/k
′
1 + 2m

−t+m2
+ (−m)

/k
′
1 + 2m

−t+m2
(−/p

1
)
/k
′
2 + 2m

−u+m2
+ (−m)

/k
′
1 + 2m

−t+m2
(m)

/k
′
1 + 2m

−t+m2

+(−m)
/k
′
1 + 2m

−t+m2
(m)

/k
′
2 + 2m

−u+m2
+(−m)

/k
′
2 + 2m

−u+m2
(−/p

1
)
/k
′
1 + 2m

−t+m2
+(−m)

/k
′
2 + 2m

−u+m2
(−/p

1
)
/k
′
2 + 2m

−u+m2
+

(−m)
/k
′
2 + 2m

−u+m2
(m)

−/k
′
1 + 2m

−t+m2
+ (−m)

/k
′
2 + 2m

−u+m2
(m)

/k
′
2 + 2m

−u+m2

}

Let’s distribute the trace and clean up a little bit:

〈|T |2〉 = g4

4

{

Tr

[

(/p
2
)
/k
′
1 + 2m

−t+m2
(/p

1
)
/k
′
1 + 2m

−t+m2

]

+ Tr

[

(/p
2
)
/k
′
1 + 2m

−t+m2
(/p

1
)
/k
′
2 + 2m

−u+m2

]

−

Tr

[

(/p
2
)
/k
′
1 + 2m

−t+m2
(m)

/k
′
1 + 2m

−t+m2

]

− Tr

[

(/p
2
)
/k
′
1 + 2m

−t+m2
(m)

/k
′
2 + 2m

−u+m2

]

+ Tr

[

(/p
2
)
/k
′
2 + 2m

−u+m2
(/p

1
)
/k
′
1 + 2m

−t+m2

]

+

Tr

[

(/p
2
)
/k
′
2 + 2m

−u+m2
(/p

1
)
/k
′
2 + 2m

−u+m2

]

− Tr

[

(/p
2
)
/k
′
2 + 2m

−u+m2
(m)

/k
′
1 + 2m

−t+m2

]

− Tr

[

(/p
2
)
/k
′
2 + 2m

−u+m2
(m)

/k
′
2 + 2m

−u+m2

]

+

Tr

[

(m)
/k
′
1 + 2m

−t+m2
(/p

1
)
/k
′
1 + 2m

−t+m2

]

+ Tr

[

(m)
/k
′
1 + 2m

−t+m2
(/p

1
)
/k
′
2 + 2m

−u+m2

]

− Tr

[

(m)
/k
′
1 + 2m

−t+m2
(m)

/k
′
1 + 2m

−t+m2

]

−

Tr

[

(m)
/k
′
1 + 2m

−t+m2
(m)

/k
′
2 + 2m

−u+m2

]

+ Tr

[

(m)
/k
′
2 + 2m

−u+m2
(/p

1
)
/k
′
1 + 2m

−t+m2

]

+ Tr

[

(m)
/k
′
2 + 2m

−u+m2
(/p

1
)
/k
′
2 + 2m

−u+m2

]

− Tr

[

(m)
/k
′
2 + 2m

−u+m2
(m)

/k
′
1 + 2m

−t+m2

]

− Tr

[

(m)
/k
′
2 + 2m

−u+m2
(m)

/k
′
2 + 2m

−u+m2

]}

Let’s pull out as many scalars as possible:

〈|T |2〉 = g4

4







Tr
[

(/p
2
)(/k

′
1 + 2m)(/p

1
)(/k

′
1 + 2m)

]

(−t+m2)(−t+m2)
+

Tr
[

(/p
2
)(/k

′
1 + 2m)(/p

1
)(/k

′
2 + 2m)

]

(−t+m2)(−u+m2)
−

m
Tr

[

(/p
2
)(/k

′
1 + 2m)(/k

′
1 + 2m)

]

(−t+m2)(−t+m2)
−m

Tr
[

(/p
2
)(/k

′
1 + 2m)(/k

′
2 + 2m)

]

(−t+m2)(−u+m2)
+
Tr

[

(/p
2
)(/k

′
2 + 2m)(/p

1
)(/k

′
1 + 2m)

]

(−u+m2)(−t+m2)
+

Tr
[

(/p
2
)(/k

′
2 + 2m)(/p

1
)(/k

′
2 + 2m)

]

(−u+m2)(−u+m2)
−m

Tr
[

(/p
2
)(/k

′
2 + 2m)(/k

′
1 + 2m)

]

(−u+m2)(−t+m2)
−m

Tr
[

(/p
2
)(/k

′
2 + 2m)(/k

′
2 + 2m)

]

(−u+m2)(−u+m2)
+

m
Tr

[

(/k
′
1 + 2m)(/p

1
)(/k

′
1 + 2m)

]

(−t+m2)(−t+m2)
+m

Tr
[

(/k
′
1 + 2m)(/p

1
)(/k

′
2 + 2m)

]

(−t+m2)(−u+m2)
−m2

Tr
[

(/k
′
1 + 2m)(/k

′
1 + 2m)

]

(−t+m2)(−t+m2)
−

m2
Tr

[

(/k
′
1 + 2m)(/k

′
2 + 2m)

]

(−t+m2)(−u+m2)
+m

Tr
[

(/k
′
2 + 2m)(/p

1
)(/k

′
1 + 2m)

]

(−u+m2)(−t+m2)
+m

Tr
[

(/k
′
2 + 2m)(/p

1
)(/k

′
2 + 2m)

]

(−u+m2)(−u+m2)
−
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−m2
Tr

[

(/k
′
2 + 2m)(/k

′
1 + 2m)

]

(−u+m2)(−t+m2)
−m2

Tr
[

(/k
′
2 + 2m)(/k

′
2 + 2m)

]

(−u+m2)(−u+m2)

}

This is too big to handle; as in the book, we’ll break this into four components:

〈|T |2〉 = g4

4

[ 〈Φtt〉
(−t+m2)(−t+m2)

+
〈Φtu〉

(−t+m2)(−u+m2)
+

〈Φut〉
(−u+m2)(−t+m2)

+
〈Φuu〉

(−u+m2)(−u+m2)

]

Now it’s just a matter of evaluating these. We have:

〈Φtt〉 = Tr
[

(/p
2
)(/k

′
1 + 2m)(/p

1
)(/k

′
1 + 2m)

]

−mTr
[

(/p
2
)(/k

′
1 + 2m)(/k

′
1 + 2m)

]

+mTr
[

(/k
′
1 + 2m)(/p

1
)(/k

′
1 + 2m)

]

−m2Tr
[

(/k
′
1 + 2m)(/k

′
1 + 2m)

]

〈Φtu〉 = Tr
[

(/p
2
)(/k

′
1 + 2m)(/p

1
)(/k

′
2 + 2m)

]

−mTr
[

(/p
2
)(/k

′
1 + 2m)(/k

′
2 + 2m)

]

+mTr
[

(/k
′
1 + 2m)(/p

1
)(/k

′
2 + 2m)

]

−m2Tr
[

(/k
′
1 + 2m)(/k

′
2 + 2m)

]

〈Φut〉 = Tr
[

(/p
2
)(/k

′
2 + 2m)(/p

1
)(/k

′
1 + 2m)

]

−mTr
[

(/p
2
)(/k

′
2 + 2m)(/k

′
1 + 2m)

]

+mTr
[

(/k
′
2 + 2m)(/p

1
)(/k

′
1 + 2m)

]

−m2Tr
[

(/k
′
2 + 2m)(/k

′
1 + 2m)

]

〈Φuu〉 = Tr
[

(/p
2
)(/k

′
2 + 2m)(/p

1
)(/k

′
2 + 2m)

]

−mTr
[

(/p
2
)(/k

′
2 + 2m)(/k

′
2 + 2m)

]

+mTr
[

(/k
′
2 + 2m)(/p

1
)(/k

′
2 + 2m)

]

−m2Tr
[

(/k
′
2 + 2m)(/k

′
2 + 2m)

]

Φtt → Φuu with k′
1 → k′

2. Further, Φtu → Φut with k′
1 ↔ k′

2. Therefore, we need to keep only
the first two of these, then we can write down the result for the other two.

Next we’ll break up these binomials; this will turn each of these from 4 terms to 16. However,
half of them will have an odd number of gamma matrices, the trace of which vanishes. Thus,
this reduces to:

〈Φtt〉 = Tr
[

(/p
2
)(/k

′
1)(/p1)(/k

′
1)
]

− 2m2Tr
[

(/p
2
)(/k

′
1)
]

+ 2m2Tr
[

(/k
′
1)(/p1)

]

−m2Tr
[

(/k
′
1)(/k

′
1)
]

+4m2Tr
[

(/p
2
)(/p

1
)
]

− 2m2Tr
[

(/p
2
)(/k

′
1)
]

+ 2m2Tr
[

(/p
1
)(/k

′
1)
]

− 4m4Tr [1]

〈Φtu〉 = Tr
[

(/p
2
)(/k

′
1)(/p1)(/k

′
2)
]

− 2m2Tr
[

(/p
2
)(/k

′
1)
]

+ 2m2Tr
[

(/k
′
1)(/p1)

]

−m2Tr
[

(/k
′
1)(/k

′
2)
]

+4m2Tr
[

(/p
2
)(/p

1
)
]

− 2m2Tr
[

(/p
2
)(/k

′
2)
]

+ 2m2Tr
[

(/p
1
)(/k

′
2)
]

− 4m4Tr [1]

We can simplify this a bit:

〈Φtt〉 = Tr
[

(/p
2
)(/k

′
1)(/p1)(/k

′
1)
]

− 4m2Tr
[

(/p
2
)(/k

′
1)
]

+ 4m2Tr
[

(/k
′
1)(/p1)

]

−m2Tr
[

(/k
′
1)(/k

′
1)
]
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+4m2Tr
[

(/p
2
)(/p

1
)
]

− 16m4

〈Φtu〉 = Tr
[

(/p
2
)(/k

′
1)(/p1)(/k

′
2)
]

− 2m2Tr
[

(/p
2
)(/k

′
1)
]

+ 2m2Tr
[

(/k
′
1)(/p1)

]

−m2Tr
[

(/k
′
1)(/k

′
2)
]

+4m2Tr
[

(/p
2
)(/p

1
)
]

− 2m2Tr
[

(/p
2
)(/k

′
2)
]

+ 2m2Tr
[

(/p
1
)(/k

′
2)
]

− 16m4

Now we are ready to use equations 47.9 and 47.13:

〈Φtt〉 = 4(p2·k′
1)(k

′
1·p1)−4(p2·p1)(k′

1·k′
1)+4(p2·k′

1)(p1·k′
1)+16m2(p2·k′

1)−16m2(k′
1·p1)+4m2(k′

1·k′
1)

−16m2(p2 · p1)− 16m4

〈Φtu〉 = 4(p2·k′
2)(k

′
1·p1)−4(p2·p1)(k′

1·k′
2)+4(p2·k′

1)(p1·k′
2)+8m2(p2·k′

1)−8m2(k′
1·p1)+4m2(k′

1·k′
2)

−16m2(p2 · p1) + 8m2(p2 · k′
2)− 8m2(p1 · k′

2)− 16m4

We also have k′ · k′ = −M2:

〈Φtt〉 = 8(p2 · k′
1)(k

′
1 · p1) + 4M2(p2 · p1) + 16m2(p2 · k′

1)− 16m2(k′
1 · p1)− 4m2M2

−16m2(p2 · p1)− 16m4

〈Φtu〉 = 4(p2·k′
2)(k

′
1·p1)−4(p2·p1)(k′

1·k′
2)+4(p2·k′

1)(p1·k′
2)+8m2(p2·k′

1)−8m2(k′
1·p1)+4m2(k′

1·k′
2)

−16m2(p2 · p1) + 8m2(p2 · k′
2)− 8m2(p1 · k′

2)− 16m4

Now we can start to use Mandelstam Variables:

s = −(p1 + p2)
2 = 2m2 − 2(p1 · p2)

s = −(k′
1 + k′

2)
2 = 2M2 − 2(k′

1 · k′
2)

t = −(p1 − k′
1)

2 = m2 +M2 + 2(p1 · k′
1)

t = −(p2 − k′
2)

2 = m2 +M2 + 2(p2 · k′
2)

u = −(p1 − k′
2)

2 = m2 +M2 + 2(p1 · k′
2)

u = −(p2 − k′
1)

2 = m2 +M2 + 2(p2 · k′
1)

These give:
2(p1 · p2) = 2m2 − s

2(k′
1 · k′

2) = 2M2 − s

2(p1 · k′
1) = t−m2 −M2

2(p2 · k′
2) = t−m2 −M2

2(p1 · k′
2) = u−m2 −M2

2(p2 · k′
1) = u−m2 −M2

We insert these into our expressions for the Φs:

〈Φtt〉 = 2(u−m2−M2)(t−m2−M2)+2M2(2m2−s)+8m2(u−m2−M2)−8m2(t−m2−M2)−4m2M2
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−8m2(2m2 − s)− 16m4

〈Φtu〉 = (t−m2−M2)(t−m2−M2)−(2m2−s)(2M2−s)+(u−m2−M2)(u−m2−M2)+4m2(u−m2−M2)

−4m2(t−m2−M2)+2m2(2M2−s)−8m2(2m2−s)+4m2(t−m2−M2)−4m2(u−M2−m2)−16m4

Now we just have to simplify this, the result of the algebra is:

〈Φtt〉 = ut−m2(−3u+ 5t− 4s)− 15m2 −M2(s+ t+ u) + 2m2M2 +M4

〈Φtu〉 = t2 + u2 − s2 + 2m2(4s− t− u) + 2M2(s− t− u)− 30m4 + 4m2M2 + 2M4

Now we use s+ t+ u = 2m2 + 2M2 and simplify further, the result is:

〈Φtt〉 = 2
[

tu−m2(9t+ u)− 7m4 + 8m2M2 −M4
]

〈Φtu〉 = 2
[

tu+ 3m2(t+ u) + 9m4 − 8m2M2 −M4
]

We get the remaining terms by swapping k′
1 ↔ k′

2, which we see from above is t ↔ u. Then:

〈Φuu〉 = 2
[

ut−m2(9u+ t)− 7m4 + 8m2M2 −M4
]

〈Φut〉 = 2
[

ut+ 3m2(t+ u) + 9m4 − 8m2M2 −M4
]

Putting all this together, the scattering amplitude is:

〈|T |2〉 = g4

2

[

tu−m2(9t+ u)− 7m4 + 8m2M2 −M4

(−t+m2)(−t+m2)
+

2tu+ 6m2(t+ u) + 18m4 − 16m2M2 − 2M4

(−t+m2)(−u+m2)

+
ut−m2(9u+ t)− 7m4 + 8m2M2 −M4

(−u+m2)(−u+m2)

]

which is not a very intuitive result, but there it is.

Srednicki 48.3. Compute 〈|T |2〉 for e−e− → e−e−. You should find that your
result is the same as that for e+e− → e+e− but with s ↔ u. This is another
example of crossing symmetry.

Srednicki started this one with 45.24:

iT =
1

i
(ig)2

[

(u′
1u1)(u

′
2u2)

−t+M2
− (u′

2u1)(u
′
1u2)

−u+M2

]

This gives:

T = g2
[

(u′
1u1)(u

′
2u2)

−t+M2
− (u′

2u1)(u
′
1u2)

−u+M2

]

Taking the conjugate of this:

T ∗ = g2
[

(u1u
′
1)(u2u

′
2)

−t+M2
− (u1u

′
2)(u2u

′
1)

−u+M2

]
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This gives:

|T |2 = g4
[

(u′
1u1)(u

′
2u2)

−t+M2
− (u′

2u1)(u
′
1u2)

−u+M2

] [

(u1u
′
1)(u2u

′
2)

−t+M2
− (u1u

′
2)(u2u

′
1)

−u+M2

]

Distributing:

|T |2 = g4
[

Φtt

(−t+M2)(−t+M2)
− Φtu

(−t+M2)(−u+M2)
− Φut

(−u+M2)(−u+M2)

+
Φuu

(−u+M2)(−u+M2)

]

where:
Φtt = (u′

1u1)(u
′
2u2)(u1u

′
1)(u2u

′
2)

Φtu = (u′
1u1)(u

′
2u2)(u1u

′
2)(u2u

′
1)

Φut = (u′
2u1)(u

′
1u2)(u1u

′
1)(u2u

′
2)

Φut = (u′
2u1)(u

′
1u2)(u1u

′
2)(u2u

′
1)

Note that swapping u′
1 ↔ u′

2 and u′
1 ↔ u′

2 will exchange Φtt ↔ Φuu and Φtu ↔ Φut. It is
therefore only necessary to evaluate two of these.

Now we use our usual trick of writing this as a trace. First though, let’s put this in the
order that will allow us to use the completeness relations:

Φtt = (u′
1u1)(u1u

′
1)(u

′
2u2)(u2u

′
2)

Φtu = (u′
1u1)(u1u

′
2)(u

′
2u2)(u2u

′
1)

Now we are ready to use our usual trick of writing the last term in index notation, moving
it to the front, recognizing this as the trace, then using the cyclic property of the trace to
move this term back to its original position. In the case of Φtt, we need two seperate traces,
as there is no way to use the completeness relations if we only take one trace. Thus:

Φtt = Tr [(u′
1u1)(u1u

′
1)] Tr [(u′

2u2)(u2u
′
2)]

Φtu = Tr [(u′
1u1)(u1u

′
2)(u

′
2u2)(u2u

′
1)]

Using the cyclic property gives:

Φtt = Tr [u′
1u

′
1u1u1] Tr [u′

2u
′
2u2u2]

Φtu = Tr [u′
1u

′
1u1u1u

′
2u

′
2u2u2]

Now we will average over the four initial states, and sum over the final states:

〈Φtt〉 =
1

4

∑

1,2,1′,2′

Tr [u′
1u

′
1u1u1] Tr [u′

2u
′
2u2u2]
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〈Φtu〉 =
1

4

∑

1,2,1′,2′

Tr [u′
1u

′
1u1u1u

′
2u

′
2u2u2]

Now we can use the completeness relations:

〈Φtt〉 =
1

4
Tr

[

(−/p
′
1
+m)(−/p

1
+m)

]

Tr
[

(−/p
′
2
+m)(−/p

2
+m)

]

〈Φtu〉 =
1

4
Tr

[

(−/p
′
1
+m)(−/p

1
+m)(−/p

′
2
+m)(−/p

2
+m)

]

Now we have to distribute these, but recall that the trace of an odd number of gamma
matrices vanishes. As a result, we can neglect half of our terms:

〈Φtt〉 =
[

1

4
Tr[/p

′
1
/p
1
] +

m2

4
Tr[1]

]

[

Tr
[

/p
′
2
/p
2

]

+m2 Tr[1]
]

〈Φtu〉 =
1

4
Tr

[

/p
′
1
/p
1
/p
′
2
/p
2

]

+
m2

4

[

/p
′
1
/p
1
+ /p

′
1
/p
′
2
+ /p

′
1
/p
2
+ /p

1
/p
′
2
+ /p

1
/p
2
+ /p

′
2
/p
2

]

+
1

4
m4 Tr[1]

Simplifying this, we have:

〈Φtt〉 =
1

4
Tr[/p

′
1
/p
1
] Tr[/p

′
2
/p
2
] +

m2

4
Tr[1] Tr[/p

′
1
/p
1
+ /p

′
2
/p
2
] +

m4

4
Tr[1] Tr[1]

〈Φtu〉 =
1

4
Tr

[

/p
′
1
/p
1
/p
′
2
/p
2

]

+
m2

4

[

/p
′
1
/p
1
+ /p

′
1
/p
′
2
+ /p

′
1
/p
2
+ /p

1
/p
′
2
+ /p

1
/p
2
+ /p

′
2
/p
2

]

+
1

4
m4 Tr[1]

This gives:
〈Φtt〉 = 4(p1 · p′1)(p2 · p′2)− 4m2(p1 · p′1)− 4m2(p2 · p′2) + 4m4

〈Φtu〉 = (p′1·p2)(p1·p′2)−(p′1·p′2)(p1·p2)+(p′1·p1)(p′2·p2)−m2(p′1·p1+p′1·p′2+p′1·p2+p1·p′2+p1·p2+p′2·p2)+m4

This time the Mandelstam variables are given by equation 48.11. Plugging these into our
expressions for the Φs, we have:

〈Φtt〉 = (t− 2m2)2 − 4m2(t− 2m2) + 4m4

〈Φtu〉 =
1

4
(u−2m2)2−1

4
(s−2m2)2+

1

4
(t−2m2)2−1

2
m2

[

(t− 2m2) + (2m2 − s) + (u− 2m2)+

(u− 2m2) + (2m2 − s) + (t− 2m2)
]

+m4

Simplifying, and making use of s+ t+ u = 4m2:

〈Φtt〉 = (t− 4m2)2

〈Φtu〉 =
1

2
(−tu+ 4m2s)

Now to get the remaining two Φs. We have to exchange u′
1 ↔ u′

2 and u′
1 ↔ u′

2, which by the
completeness relations means swapping p′1 ↔ p′2. According to 48.11, this means swapping
t ↔ u. Thus:

〈Φuu〉 = (u− 4m2)2
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〈Φut〉 =
1

2
(−tu+ 4m2s)

Combining all our results, we have:

〈|T |2〉 = g4
[

(t− 4m2)2

(−t+M2)2
+

tu− 4m2s

(−t+M2)(−u+M2)
+

(u− 4m2)2

(−u+M2)2

]

Again, not exactly a beautiful result, but there we are.

Srednicki 48.4. Suppose that M ≥ 2m, so that the scalar can decay to an
electron-positron pair.

(a) Compute the decay rate, summed over final spins.

Let’s draw the diagram:

k1
−p2′

p1′

We use the Feynman rules to assess the value of this diagram:

iT = us
1′
(~p1′)(ig)(1)vs

2′
(~p2′)

The magnitude of this is:

|T |2 = g2
[

us′
1
(~p1′)vs

2′
(~p2′)vs

2′
(~p2′)us

1′
(~p1′)

]

Now we use our usual trace trick, giving us:

|T |2 = g2 Tr
[

us
1′
(~p1′)us′

1
(~p1′)vs

2′
(~p2′)vs

2′
(~p2′)

]

(48.4.1)

Using the completeness relation:

〈|T |2〉 = g2 Tr
[

(−/p
1′
+m)(−/p

2′
−m)

]

We can simplify this:

〈|T |2〉 = g2 Tr
(

/p
1′
/p
2′

)

− g2m2Tr(1)

Using our trace identities:

〈|T |2〉 = −4g2(p1′ · p2′)− 4m2g2

Recall the definition of the Mandelstam variables:

s = −(p1′ + p2′)
2 = 2m2 − 2(p1′ · p2′) =⇒ p1′ · p2′ = m2 − s

2
(48.4.2)
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Using this, we have:
〈|T |2〉 = 2g2(s− 4m2)

For decay processes, recall that s = M2. Thus:

〈|T |2〉 = 2g2(M2 − 4m2) (48.4.3)

Now we can use this in equation 11.48:

dΓ =
1

2M
2g2(M2 − 4m2)

|k1′ |
16π2

√
s
dΩCM

Now we use equation 11.3:

|k1′ | =
1

2M

√
M4 − 4m2M2 =

1

2

√
M2 − 4m2

Putting this all together:

dΓ =
1

2M
2g2(M2 − 4m2)

1

2

√
M2 − 4m2

1

16π2M
dΩCM

Simplifying:

dΓ =
g2

32π2M2
(M2 − 4m2)3/2dΩ

The symmetry factor for the diagram is 1, so we use 11.49:

Γ =
g2

8πM2
(M2 − 4m2)3/2

which is:

Γ =
g2M

8π

[

1−
(

2m

M

)2
]3/2

(b) Compute |T |2 for decay into an electron with spin s1 and a positron with spin
s2. Take the fermion three-momenta to be along the z-axis, and let the x-axis
be the spin-quantization axis. You should find that |T |2 = 0 if the s1 = −s2.
Discuss this in light of conservation of angular momentum and of parity.

This is the same problem as the previous one, except this time we will not sum or aver-
age over the spin states. Thus, we follow the derivation from part (a) up until the summing
and averaging (equation (48.4.1)):

|T |2 = g2 Tr
[

us
1′
(~p1′)us′

1
(~p1′)vs

2′
(~p2′)vs

2′
(~p2′)

]

Now we can use equation 38.28, but x is the spin-quantization axis, so we must take z → x.
Thus:

|T |2 = g2

4
Tr

[

(1− s1γ5/x)(−p1′ +m)(1− s2γ5/x)(−/p
2′
−m)

]

(48.4.4)
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Now we simplify, dropping those terms with an odd number of γ matrices:

|T |2 = g2

4
Tr

[

(−/p
1′
)(−/p

2′
) + (−/p

1′
)(−s2′γ5/x)(−m)−m2 +m(−s2′γ5/x)(−/p

2′
)

+(−s1′γ5/x)(−/p
1′
)(−m) + (−s1′γ5/x)(−/p

1′
)(−s2′γ5/x)(−/p

2′
) + (−s1′γ5/x)(m)(−/p

2′
)

+(−s1′γ5/x)(m)(−s2′γ5/x)(−m)]

We can simplify a few of these terms:

|T |2 = g2

4
Tr

[

−4(p1′ · p2′)−ms2′ Tr(/p
1′
γ5/x)− 4m2 +ms2′ Tr(γ5/x/p

2′
)−ms1′ Tr(γ5/x/p

1′
)

+s1′s2′ Tr(γ5/x/p
1′
γ5/x/p

2′
) +ms1′ Tr(γ5/x/p

2′
)−m2s1′s2′ Tr(γ5/xγ5/x)

]

Now we use the definition of s:

s = −(p1′ + p2′)
2 = −p21′ − p22′ − 2p1′ · p2′

Solving this, and recalling that p2
1′
= −m2, we have p1′ · p2′ = m2 − s

2
.

Also we recall that {γ5, γµ} = 0. Then:

|T |2 = g2

4

{

4

(

s− 2m2

2

)

−m(s1′ + s2′) Tr(/p
1
γ5/x) +m(s1′ + s2′) Tr(γ5/x/p

2
)

+m2s1′s2′ Tr(γ5γ5/x/x) + s1′s2′ Tr(γ5γ5/x/p
1′
/x/p

2′
)− 4m2

}

Now we use 28.16 to drop some of these terms. Further, γ5γ5 = I. Thus:

|T |2 = g2

4

{

2s− 4m2 − 4m2s1′s2′(x · x) + s1′s2′ Tr(/x/p
1′
/x /p2′)− 4m2

}

We further use equation 47.13:

|T |2 = g2
{s

2
− 2m2 −m2(x · x)s1′s2′ + [(x · p2′)(x · p1′)− (x · x)(p1′ · p2′) + (x · p1′)(x · p2′)] s1′s2′

}

(48.4.5)
Now we recall that x = (0, x̂), so x · x = 1:

|T |2 = g2
{s

2
− 2m2 −m2s1′s2′ + [(x · p2′)(x · p1′)− (x · x)(p1′ · p2′) + (x · p1′)(x · p2′)] s1′s2′

}

Now the three-momentum is in the z-direction, so pi · x = 0. Then:

|T |2 = g2
{s

2
− 2m2 −m2s1′s2′ − (p1′ · p2′)s1′s2′

}

Using our definition of s again:

|T |2 = g2
{s

2
− 2m2 −m2s1′s2′ +

(s

2
−m2

)

s1′s2′
}
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For decay, s = M2. Thus:

|T |2 = g2

2

{

M2(1 + s1′s2′)− 4m2(1 + s1′s2′)
}

Simplifying:

|T |2 = g2

2
(M2 − 4m2)(1 + s1′s2′)

Now, the Lagrangian should be even under parity. Our interaction term is L1 = gφΨΨ. ΨΨ
is even by 40.37, so φ must be even as well. In other words, the initial parity is +1.

We work in the center of mass frame, where the scalar has no motion and therefore no
orbital angular momentum. The scalar is spin-0, so there is no spin angular momentum.
Thus, the initial angular momentum must be zero.

The parity after decay is given by 40.17: P = (−1)ℓ+1. Now imagine that M = 2m: in
this case there can be no motion relative to the original scalar after decay. As a result,
ℓ = 0, and the parity afterwords must be -1. This is no good, as the parity of the original
scalar was +1. So, we expect |T |2 = 0 if M = 2m, as is indeed the case.

Now consider the final angular momentum. The orbital angular momentum is nonzero,
because the spin and the linear momentum are not collinear. Thus, we need the spin angu-
lar momentum to be nonzero in order to cancel this out. Therefore, we need the spins to be
in the same direction (if they are in the opposite direction, they will cancel each other and
cannot cancel the orbital angular momentum). Thus, we expect |T |2 = 0 if the spins are in
the opposite directions, as is indeed the case.

(c) Compute |T |2 for decay into an electron with helicity s1 and a positron
with helicity s2. You should find thta the decay rate is zero if s1 = s2. Discuss
this in light of conservation of angular momentum and of parity.

This is the same problem as before, except this time we have helicity rather than spin
specified, meaning that the spin must be along the same axis as the three-momentum (we’ll
use the z-axis). Thus, our answer from part (b) holds up to equation (48.4.5) with x → z.
We must also be much clearer about the helicity axes (since the helicities are not necessarily
in the same direction as each other): let’s call them z1 and z2 to avoid confusion. Thus:

|T |2 = g2
{s

2
− 2m2 +

[

(z1 · p2′)(z2 · p1′)− (z1 · z2)(p1′ · p2′) + (z1 · p1′)(z2 · p2′)−m2(z1 · z2)
]

s1′s2′
}

Next, we note the kinematics of the collision. In the center of mass frame, we originally
had a scalar with four-momentum given by p1 = (M, 0), which has magnitude −M2. After
the collision, we had two fermions with p1′ = (E, ~p) and p2′ = (E,−~p). Adding these, we
get p1 + p2 = (2E, 0), which has magnitude −4E2. Equating these two magnitudes, we
determine that E = M

2
.
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Next, we consider that −m2 = p2 = −E2 + |~p|2 = −M2

4
+ |~p|2, which implies that |~p|2 =

M2

4
−m2, and so |~p| =

√
M2−4m2

2
.

The result of this is that p1 =
(

M
2
,
√
M2−4m2

2
ẑ
)

and p2 =
(

M
2
,−

√
M2−4m2

2
ẑ
)

.

What about z1 and z2? We recall our conventions (from page 241) that z2 = 1 and p · z = 0.
Thus:

z1 =

(
√
M2 − 4m2

2m
,
M

2m
ẑ

)

z2 =

(
√
M2 − 4m2

2m
,−M

2m
ẑ

)

Our expression is (using s = M2):

|T |2 = g2
{

M2

2
− 2m2 +

[

(z1 · p2′)(z2 · p1′)− (z1 · z2)(p1′ · p2′) + (z1 · p1′)(z2 · p2′)−m2(z1 · z2)
]

s1′s2′

}

p1 · z1 = 0 of course, so:

|T |2 = g2
{

M2

2
− 2m2 +

[

(z1 · p2′)(z2 · p1′)− (z1 · z2)(p1′ · p2′)−m2(z1 · z2)
]

s1′s2′

}

Using our expressions for pi and z, we have:

|T |2 = g2
{

M2

2
− 2m2 +

[

M2(M2 − 4m2)

4m2
− (z1 · z2)(p1′ · p2′ +m2(z1 · z2))

]

s1′s2′

}

Using our expressions for pi and z again, we have:

|T |2 = g2
{

M2

2
− 2m2 +

[

M2(M2 − 4m2)

4m2
−
(

1− M2

2m2

)(

−M2

2
+m2 +m2

)]

s1′s2′

}

Simplifying the part in brackets gives:

|T |2 = g2
{

M2

2
− 2m2 +

(

M2

2
− 2m2

)

s1′s2′

}

Factoring:

|T |2 = g2

2

(

M2 − 4m2
)

(1 + s1′s2′)

The initial angular momentum is zero as before. The spins are parallel to the 3-momentum
(since we are in a state of definite chirality), so no orbital angular momentum in the final
state is possible. Thus, the final spin angular momentum must also be zero.

What is the final spin angular momentum? We have s1′ along the direction of the three-
momentum, and s2′ along the direction of the 2-particle’s three momentum, which we know
is (in the center of mass frame) equal and opposite to the one-particle’s three momentum.
Thus, the total spin is s1 − s2. For this to go to zero, we therefore need s1 = s2. For any
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other possible arrangement (and in this case there is only one other possible arrangement,
s1 = −s2), angular momentum will not be conserved, and so the transitition amplitude must
vanish. This is exactly what we see.

(d) Now consider changing the interaction to L = igφΨγ5Ψ, and compute the
spin-summed decay rate. Explain (in light of consevation of angular momentum
and of parity) why the decay rate is larger than it was without the iγ5 in the
interaction.

We start with equation (48.4.1), this time making the substitution g → igγ5. Then:

|T |2 = −g2 Tr
[

us
1′
(~p1′)us′

1
(~p1′)γ5vs

2′
(~p2′)vs

2′
(~p2′)γ5

]

Now we want to sum over the final states:

〈|T |2〉 = −g2
∑

s
1′

∑

s
2′

Tr
[

us
1′
(~p1′)us′

1
(~p1′)γ5vs

2′
(~p2′)vs

2′
(~p2′)γ5

]

Now we use 46.8 and 46.13:

〈|T |2〉 = −g2 Tr
[

(−/p
1
+m)γ5(− /p2 −m)γ5

]

We can anticommute the last γ5 through the /p
2
, with the result:

〈|T |2〉 = −g2 Tr
[

(−/p
1
+m)γ5γ5( /p2 −m)

]

Now of course γ2
5 = 1; hence:

〈|T |2〉 = −g2 Tr
[

(−/p
1
+m)( /p2 −m)

]

Multiplying the binomials, and dropping terms with an odd number of gamma matrices:

〈|T |2〉 = −g2 Tr
[

−/p
1
/p
2
−m2

]

Taking the trace:
〈|T |2〉 = g2

[

−4(p1 · p2) + 4m2
]

Using equation (48.4.2):

〈|T |2〉 = g2
[

−4
(

m2 − s

2

)

+ 4m2

]

Now take s = M2:
〈|T |2〉 = g2

[

−4m2 + 2M2 + 4m2
]

which is:
〈|T |2〉 = 2g2M2

Now we compare this to equation (48.4.3). This is larger by a factor of M2

M2−4m2 . Recall that
according to 11.48, the decay rate is directly proportional to |T |2. Thus, our decay rate is
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also larger by the same factor. For completeness, the decay rate of the new process is given
by:

Γ =
g2M

8π

√

1−
(

2m

M

)2

Why is this rate larger? Why is the new interaction more prone to decay? In this interac-
tion, equation 40.37 tells us that Ψiγ5Ψ has odd parity; since the Lagrangian must have even
parity, it follows that φ must have odd parity. Therefore, the parity in the initial state is odd.

In the final state, the parity is again given by P = (−1)ℓ+1. Thus, ℓ must be even.

What about angular momentum? There is no angular momentum in the initial state, so
the orbital angular momentum must be equal and opposite the spin angular momentum.
The spin angular momentum is at most one (both fermions in the same direction). There-
fore, ℓ is at most one. Since ℓ is even, it follows that ℓ = 0.

Now in part (a), we had the requirement that there must be orbital angular momentum,
otherwise there would be no way to conserve parity. As a result, we had an amplitude that
got very small as the electron three-momentum decreased. Here in part (d) there is no such
requirement, hence the matrix element, and the decay rate, are larger.

(e) Repeat parts (b) and (c) for the new form of the interaction, and explain
any differences in the results.

We begin with equation (48.4.4), inserting the γ5 matrices as needed.

|T |2 = −g2

4
Tr

[

(1− s1γ5/x)(−/p
1′
+m)γ5(1− s2γ5/x)(−/p

2′
−m)γ5

]

Now we do the multiplication, dropping those terms with an odd number of gamma matrices:

|T |2 = −g2

4
Tr

[

(−/p
1′
)γ5(−/p

2′
)γ5 + (−/p

1′
)γ5(−s2γ5/x)(−m)γ5 +mγ5(−m)γ5

mγ5(−s2γ5/x)(−/p
2
)γ5 + (−s1γ5/x)(−/p

1′
)γ5(−m)γ5 + (−s1γ5/x)(−/p

1′
)γ5(−s2γ5/x)(−/p

2′
)γ5

(−s1γ5/x)(m)γ5(−/p
2′
)γ5 + (−s1γ5/x)(m)γ5(−s2γ5/x)(−m)γ5

]

Now we use {γ5, γµ} = 0, and γ2
5 = 1. This gives:

|T |2 = −g2

4
Tr

[

−/p
1′
/p
2′
−ms2′/p

1′
/xγ5 −m2 +ms2/x/p

2′
γ5 −ms1γ5/x/p

1′
+ s1s2/x/p

1′
/x/p

2′

−ms1γ5/x/p
2′
−m2s1s2/x/x

]

Evaluating these traces, we have:

|T |2 = −g2

4

{

4(p1′ · p2′ − 4m2 + 4s1s2 [(x · p2′)(x · p1′)− (x · x)(p1′ · p2′) + (x · p1′)(x · p2′)]
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+4m2s1s2(x · x)
}

Simplifying:

|T |2 = −g2
{

(p1′ · p2′)−m2 + s1s2
[

2(x · p1′)(x · p2′) + (x · x)(m2 − (p1′ · p2′))
]}

Now we use (x · x) = 1 and p1′ · x = 0. Then:

|T |2 = −g2
{

(p1′ · p2′)−m2 + s1s2
[

m2 − (p1′ · p2′)
]}

Simplifying:
|T |2 = −g2

{

(p1′ · p2′)−m2 − s1s2
[

(p1′ · p2′)−m2
]}

(48.4.6)

Factoring:
|T |2 = −g2

(

p1′ · p2′ −m2
)

(1− s1s2)

Recall that p1 · p2 = m2 − M2

2
. Then:

|T |2 = g2

2
M2 (1− s1s2)

This is different from our result in part (b). Notice:

• Initially, we have no angular momentum and odd parity. Finally, we have (as discussed
in part (d)), no orbital angular momentum. Thus, there must be no spin angular
momentum, and so the spins must be equal and opposite. Thus, we expect that |T |2
will vanish if the spins are the same, which is what we do observe.

• The magnitude is different, as observed in part (d).

• There is no dependence on m! This might seem surprising; we would expect the
“physics” to depend on both masses. But it still does – |T |2 is just a scattering
amplitude, not an observable. The m dependence will enter when we calculate an
observable (like Γ).

Now to repeat part (c) for the new interaction. As in the original part (c), we take equation
(48.4.6) and change x → z1, z2. We recall that p1 · z1 = 0. Thus:

|T |2 = −g2
{

(p1′ · p2′)−m2 + s1s2
[

(z1 · p2)(z2 · p1) + (z1 · z2)(m2 − p1′ · p2′)
]}

We defined z and p in part (c); we simply plug in and the result is:

|T |2 = −g2

2
M2(1 + s1s2)

There is no difference from the result in part (c) except the magnitude, as discussed above.

Srednicki 48.5. The charged pion π− is represente by a complex scalar field
φ, the muon µ− by a Dirac field M, and the muon neutrino νµ by a spin-
projected Dirac field PLN , where PL = 1

2
(1− γ5). The charged pion can decay

to a muon and a muon antineutrino via the interaction:

L1 = 2c1GFfπ∂µφMγµPLN +h.c.
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where c1 is the cosine of the Cabibbo angle, GF is the Fermi constant, and fπ is
the pion decay constant .

(a) Compute the charged pion decay rate Γ.

Our interaction Lagrangian, written in full, is:

L1 = 2c1GFfπ∂µφMγµ1

2
(1− γ5)N

Note that we have neglected the Hermitian conjugate, because we have a µ− decaying, not
a µ+.

The Feynman diagram is the same as in the previous problem, so the only new compli-
cation is the vertex factor. Recall that we replace the derivative with ik, drop the field
terms, and add a factor of i. Then:

V.F. = ic1GFfπ(ik1µ)γ
µ(1− γ5)

Thus, the magnitude of the diagram is:

iT = us
1′
(~p1′) [ic1GFfπ(ik1µ)γ

µ(1− γ5)] vs
2′
(~p2′)

Define g = c1GFfπ
T = igus

1′
(~p1′) [(/k1)(1− γ5)] vs

2′
(~p2′)

Now we want to simplify this using the Dirac Equation, otherwise we get horrible messes of
γ matrices. Let’s start by recognizing that k1 = p1′ + p2′ , so:

T = igus
1′
(~p1′)

[

(/p
1′
+ /p

2′
)(1− γ5)

]

vs
2′
(~p2′)

p1′ represents the muon, so we should have it act on the u according to equation 38.16. Thus:

T = igus
1′
(~p1′)

[

(−mµ + /p
2′
)(1− γ5)

]

vs
2′
(~p2′)

p2′ represents the neutrino, so we should have it act on the v. First, we have to (anti)commute
through the (1− γ5):

T = igus
1′
(~p1′)

[

−mµ + /p
2′
+mµγ5 − /p

2′
γ5

]

vs
2′
(~p2′)

which is:
T = igus

1′
(~p1′)

[

−mµ + /p
2′
+mµγ5 + γ5/p

2′

]

vs
2′
(~p2′)

Now we use equation 38.1, but we can neglect the neutrino mass. Thus:

T = −igmµus
1′
(~p1′) (1− γ5) vs

2′
(~p2′)

Taking the conjugate of this (recalling that iγ5 = iγ5):

T = igmµvs
2′
(~p2′) (1 + γ5) us

1′
(~p1′)
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Thus:
|T |2 = g2m2

µus
1′
(~p1′) (1− γ5) vs

2′
(~p2′)vs

2′
(~p2′) (1 + γ5) us

1′
(~p1′)

Next we use our usual trick of writing in index notation, reordering, then dropping the index
notation; the result is:

|T |2 = g2m2

µ Tr
[

us
1′
(~p1′)us

1′
(~p1′) (1− γ5) vs

2′
(~p2′)vs

2′
(~p2′) (1 + γ5)

]

Now we can sum over the final states, and use 46.8 and 46.16 (again neglecting the neutrino
mass):

|T |2 = g2m2

µ Tr
[

(−/p
1′
+mµ) (1− γ5) (−/p

2′
) (1 + γ5)

]

Moving /p
2′
to the left:

|T |2 = g2m2

µ Tr
[

(−/p
1′
+mµ)(−/p

2′
) (1 + γ5) (1 + γ5)

]

Multiplying these last two binomials, we have:

|T |2 = 2g2m2

µ Tr
[

(−/p
1′
+mµ)(−/p

2′
)(1 + γ5)

]

Performing this multiplication, only one term survives:

|T |2 = 2g2m2

µ Tr
[

/p
1′
/p
2′

]

which is:
|T |2 = −8g2m2

µ(p1 · p2)
Solving for the Mandelstam variable as usual, we have:

p1 · p2 =
m2

µ −m2
π

2

Thus:
|T |2 = 4g2m2

µ(m
2

π −m2

µ)

Now we put this into 11.48:

dΓ =
1

2mπ

4m2

µg
2(m2

π −m2

µ)
|k1′ |

16π2mπ

dΩcm

11.3 gives, after simplification, that |k1′ | = 1

2mπ

(m2
π −m2

µ). Thus:

dΓ =
g2

16π2

(m2
π −m2

µ)
2m2

µ

m3
π

dΩcm

Integrating both sides, we have:

Γ =
g2

4π

(m2
π −m2

µ)
2m2

µ

m3
π

19



(b) The charged pion mass is mπ = 139.6 MeV, the muon mass is mµ = 105.7
MeV, and the muon neutrino is massless. The Fermi constant is measured in
muon decay to be GF = 1.166×10−5GeV−2, and the cosine of the Cabibbo angle
is measured in nuclear beta decays to be c1 = 0.974. The measured value of
the charged pion lifetime is 2.603 × 10−8 s. Determine the value of the fπ in
MeV. Your result is too large by 0.8%, due to neglect of electromagnetic loop
corrections.

Plugging in numbers (have to convert, GF = 1.166× 10−11GeV−2), we have:

Γ = 2.91× 10−18f 2

π MeV−1

Now τ = 1/Γ, so:

τ =
3.43× 1017

f 2
π

MeV

Now let’s multiply by Planck’s constant to bring some units of time into this. This gives:

τ =
2.258× 10−4

f 2
π

MeV2 s

Equating with the measured value of τ , we have:

2.603× 10−8 s =
2.258× 10−4

f 2
π

MeV2 s

Solving this, we have
fπ = 93.13 MeV

Note: we actually calculated GF back in problem 11.3; the only non-contained part of this

problem is the Cabbibo angle, which we’ll discuss later on. Though of course, the more

fundamental question is where these Lagrangians come from – we’ll get there also.
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