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Srednicki 4.1. Verify eq. 4.12. Verify its limit as m — 0.
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Using equation 4.2:
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Doing the k’ integral, we're left with:
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Now we take advantage of the comment in the text, and work in the frame where t = t’.
Then,
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Now we decide to work in polar coordinates:
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Now we do the ¢ integral:
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Now we do the 6 integral:
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which becomes:
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Plugging in for w:
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which becomes:
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Now we integrate by parts:
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You might be concerned about our boundary term, which we appear to have forgotten. In
fact, it is customary to assume our functions are well-behaved at the arbitrarily high values,
since they are unphysical. Then,
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These ms cancel:
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which is:
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This is a bessel function! m
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which verifies equation 4.12. As for the asymptotic behavior, let’s expand this around m = 0:
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These last three terms obviously vanish. The fourth-to-last term vanishes by 1I’'Hopital’s
Rule. Hence,
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