Srednicki Chapter 4
 QFT Problems \& Solutions

A. George

May 30, 2012

Srednicki 4.1. Verify eq. 4.12. Verify its limit as $m \rightarrow 0$.

$$
\begin{aligned}
{\left[\phi^{+}(x), \phi^{-}\left(x^{\prime}\right)\right]_{\mp} } & =\left[\int \widetilde{d k} e^{i k x} a(\mathbf{k}), \int \widetilde{d k^{\prime}} e^{-i k^{\prime} x^{\prime}} a^{\dagger}\left(\mathbf{k}^{\prime}\right)\right]_{\mp} \\
{\left[\phi^{+}(x), \phi^{-}\left(x^{\prime}\right)\right]_{\mp} } & =\int \widetilde{d k} \widetilde{d k^{\prime}} e^{i\left(k x-k^{\prime} x^{\prime}\right)}\left[a(\mathbf{k}), a^{\dagger}\left(\mathbf{k}^{\prime}\right)\right]_{\mp}
\end{aligned}
$$

Using equation 4.2:

$$
\left[\phi^{+}(x), \phi^{-}\left(x^{\prime}\right)\right]_{\mp}=\int \widetilde{d k} \widetilde{d k^{\prime}} e^{i\left(k x-k^{\prime} x^{\prime}\right)}(2 \pi)^{3} 2 \omega \delta^{3}\left(\mathbf{k}-\mathbf{k}^{\prime}\right)
$$

which is:

$$
\left[\phi^{+}(x), \phi^{-}\left(x^{\prime}\right)\right]_{\mp}=\int \widetilde{d k} d^{3} k^{\prime} e^{i\left(k x-k^{\prime} x^{\prime}\right)} \delta^{3}\left(\mathbf{k}-\mathbf{k}^{\prime}\right)
$$

Doing the k ' integral, we're left with:

$$
\left[\phi^{+}(x), \phi^{-}\left(x^{\prime}\right)\right]_{\mp}=\int \widetilde{d k} e^{i k\left(x-x^{\prime}\right)}
$$

Now we take advantage of the comment in the text, and work in the frame where $\mathrm{t}=\mathrm{t}$ '. Then,

$$
\left[\phi^{+}(x), \phi^{-}\left(x^{\prime}\right)\right]_{\mp}=\int \frac{d^{3} k}{(2 \pi)^{3} 2 \omega} e^{i \mathbf{k} \cdot\left(\mathbf{x}-\mathbf{x}^{\prime}\right)}
$$

Now we decide to work in polar coordinates:

$$
\left[\phi^{+}(x), \phi^{-}\left(x^{\prime}\right)\right]_{\mp}=\int \frac{d k d \theta d \phi}{(2 \pi)^{3} 2 \omega} k^{2} \sin (\theta) e^{i k r \cos \theta}
$$

Now we do the ϕ integral:

$$
\left[\phi^{+}(x), \phi^{-}\left(x^{\prime}\right)\right]_{\mp}=\int \frac{d k d \theta}{(2 \pi)^{2} 2 \omega} k^{2} \sin (\theta) e^{i k r \cos \theta}
$$

Now we do the θ integral:

$$
\left[\phi^{+}(x), \phi^{-}\left(x^{\prime}\right)\right]_{\mp}=\int \frac{d k}{(2 \pi)^{2} 2 \omega} k^{2} \frac{2 \sin (k r)}{k r}
$$

which becomes:

$$
\left[\phi^{+}(x), \phi^{-}\left(x^{\prime}\right)\right]_{\mp}=\int \frac{d k}{(2 \pi)^{2}} \frac{k \sin (k r)}{\omega r}
$$

Plugging in for ω :

$$
\left[\phi^{+}(x), \phi^{-}\left(x^{\prime}\right)\right]_{\mp}=\frac{1}{r(2 \pi)^{2}} \int d k \frac{k \sin (k r)}{\sqrt{k^{2}+m^{2}}}
$$

which becomes:

$$
\left[\phi^{+}(x), \phi^{-}\left(x^{\prime}\right)\right]_{\mp}=\frac{1}{4 \pi^{2} r} \int_{0}^{\infty} d k \sin (k r)\left[1+\left(\frac{m}{k}\right)^{2}\right]^{-1 / 2}
$$

Now we integrate by parts:

$$
\left[\phi^{+}(x), \phi^{-}\left(x^{\prime}\right)\right]_{\mp}=\frac{m^{2}}{4 \pi^{2} r^{2}} \int_{0}^{\infty} d k \cos (k r)\left[1+\left(\frac{m}{k}\right)^{2}\right]^{-3 / 2} \frac{1}{k^{3}}
$$

You might be concerned about our boundary term, which we appear to have forgotten. In fact, it is customary to assume our functions are well-behaved at the arbitrarily high values, since they are unphysical. Then,

$$
\left[\phi^{+}(x), \phi^{-}\left(x^{\prime}\right)\right]_{\mp}=\frac{m^{2}}{4 \pi^{2} r^{2}} \int_{0}^{\infty} d k \cos (k r)\left[k^{2}+m^{2}\right]^{-3 / 2}
$$

Now let $t=\frac{k}{m} \Longrightarrow k=t m$:

$$
\left[\phi^{+}(x), \phi^{-}\left(x^{\prime}\right)\right]_{\mp}=\frac{m^{3}}{4 \pi^{2} r^{2}} \int_{0}^{\infty} d t \cos (t m r)\left[(t m)^{2}+m^{2}\right]^{-3 / 2}
$$

These ms cancel:

$$
\left[\phi^{+}(x), \phi^{-}\left(x^{\prime}\right)\right]_{\mp}=\frac{1}{4 \pi^{2} r^{2}} \int_{0}^{\infty} d t \cos (t m r)\left[1+t^{2}\right]^{-3 / 2}
$$

which is:

$$
\left[\phi^{+}(x), \phi^{-}\left(x^{\prime}\right)\right]_{\mp}=\frac{m}{4 \pi^{2} r} \frac{1}{m r} \int_{0}^{\infty} d t \cos (t m r)\left[1+t^{2}\right]^{-3 / 2}
$$

This is a bessel function!

$$
\left[\phi^{+}(x), \phi^{-}\left(x^{\prime}\right)\right]_{\mp}=\frac{m}{4 \pi^{2} r} K_{1}(m r)
$$

which verifies equation 4.12 . As for the asymptotic behavior, let's expand this around $m=0$:

$$
\lim _{m \rightarrow 0}\left[\phi^{+}(x), \phi^{-}\left(x^{\prime}\right)\right]_{\mp}=\frac{1}{4 \pi^{2} r^{2}}\left(1+\frac{1}{4}(m r)^{2}(2 \log (m r)+2 \gamma-1-\log (4))+\ldots\right)
$$

These last three terms obviously vanish. The fourth-to-last term vanishes by l'Hôpital's Rule. Hence,

$$
\lim _{m \rightarrow 0}\left[\phi^{+}(x), \phi^{-}\left(x^{\prime}\right)\right]_{\mp}=\frac{1}{4 \pi^{2} r^{2}}
$$

