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Srednicki 39.1. Verify equation 39.24.

Let’s start with the definition of the Noether Charge. We have:

Q =

Z
d

3
xj

0

Note that we use Srednicki 22.9 rather than 22.27 since in this case, the symmetry being
considered leaves the terms invariant, not merely invariant up to an overall divergence. Using
the definition of the Noether current, Srednicki 22.6, we have:

Q =

Z
d

3
x

@L
@(@0�)

��

The Lagrangian in question is equation 39.1, which can be written:

L = i �µ

@

µ

 +m  

Then:
@L

@(@0�)
= i �0 (39.1.1)

Further, the symmetry in question is:

 ! e

�i↵ =  � i↵ + . . . (39.1.2)

Combining these numbered results, we have:

j

0 = i �0(�i↵) 

It is customary to remove the infinitesimal term form the Noether current. Thus:

j

0 =  �0 

Which gives the Noether Charge as:

Q =

Z
d

3
x �0 
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Now we are ready to insert the solution to the Dirac Equation, Srednicki 37.30. Recall
equation 37.17, the e↵ect of which is that the expansion of  is the same as  with the
daggers and exponentials “Hermitianated” and the spinors barred. Then:

Q =

Z
d

3
x

"
X

s=±

Z
f
dp

�
e

�ipx

u

s

(p)b†
s

(p) + e

ipx

v

s

(p)d
s

(p)
�
#
�

0

"
X

s

0=±

Z
f
dp

0
⇣
b

s

0(p0)u
s

0(p0)eip
0
x + d

†
s

0(p0)v
s

0(p0)e�ip

0
x

⌘#

We distribute. Further, we recall that the operators act on vacuums or particles, not tensors,
and therefore commute with the spinors.

Q =
X

s=±

X

s

0=±

Z
d

3
x

f
dp

f
dp

0
h
e

i(p0�p)x
u

s

(p)�0
u

s

0(p0)b†
s

(p)b
s

0(p0)

+e

�i(p+p

0)x
u

s

(p)�0
v

s

0(p0)d†
s

0(p0)b†
s

(p) + e

i(p+p

0)x
v

s

(p)�0
u

s

0(p0)d
s

(p)b
s

0(p0)

+ e

i(p�p

0)x
v

s

(p)�0
v

s

0(p0)d
s

(p)d†
s

(p0)
i

Next we use equation 38.21, killing the second sum as well as the second and third terms:

Q = 2!
X

s=±

Z
d

3
x

f
dp

f
dp

0
h
e

i(p0�p)x
b

†
s

(p)b
s

(p0) + e

i(p�p

0)x
d

s

(p)d†
s

(p0)
i

Next we split up the exponentials into spatial and temporal parts. We also write the second
integral explicitely:

Q = 2!
X

s=±

Z
d

3
x

f
dp

d

3
p

0

(2⇡)32!

h
e

�i(!0�!)t
e

i(~p0�~p)·~x
b

†
s

(p)b
s

(p0) + e

�i(!�!

0)t
e

i(~p�~p

0)·~x
d

s

(p)d†
s

(p0)
i

Next we use equation 3.27:

Q =
X

s=±

f
dp d

3
p

0
h
e

�i(!0�!)t
�

3(~p0 � ~p)b†
s

(p)b
s

(p0) + e

�i(!�!

0)t
�

3(~p� ~p

0)d
s

(p)d†
s

(p0)
i

We do the last integral. Note that the spatial parts are required to be equal, and the
magnitudes are required to be equal (since the masses are the same), so the temporal parts
must be equal too, ie ! = !

0. Thus:

Q =
X

s=±

f
dp

⇥
b

†
s

(p)b
s

(p) + d

s

(p)d†
s

(p)
⇤

Finally, we use 39.17 to anticommute these terms:

Q =
X

s=±

f
dp

⇥
b

†
s

(p)b
s

(p)� d

†
s

(p)d
s

(p) + (2⇡)32!
⇤
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which is of course:
Q =

X

s=±

f
dp

⇥
b

†
s

(p)b
s

(p)� d

†
s

(p)d
s

(p) + const
⇤

as expected.

Srednicki 39.2. Use [ (x),M

µ⌫

] = �i(x

µ

@

⌫ � x

⌫

@

µ

) (x), plus whatever spinor

identities you need, to show that

J

z

b

†
s

(pẑ)|0i =
1

2

sb

†
s

(pẑ)|0i

J

z

d

†
s

(pẑ)|0i =
1

2

sd

†
s

(pẑ)|0i

where ~p = pẑ is the three-momentum, and ẑ is a unit vector in the z direction.

Let’s do both of these simultaneously. First, we use 39.10 and 39.12:

J

z

b

†
s

(pẑ)|0i = J

z

Z
d

3
x e

ipx (x)�0
u

s

(pẑ)|0i

J

z

d

†
s

(pẑ)|0i = J

z

Z
d

3
x e

ipx

v

s

(pẑ)�0 (x)|0i

Next we want to commute J

z

through the matrix multiplication. J

z

acting on a term |ni
will give s|ni. This will not be a↵ected by any terms in front of the ket. In other words, it
doesn’t matter if J

z

acts on the ket before the other stu↵ or after the other stu↵ – it therefore
commutes with the other stu↵.

The exception to this is if the “other stu↵” changes the ket. The commutation between
J

z

and this “other stu↵” needs to be carefully treated. Thus:

J

z

b

†
s

(pẑ)|0i =
Z

d

3
x e

ipx[J
z

, (x)]�0
u

s

(pẑ)|0i

J

z

d

†
s

(pẑ)|0i =
Z

d

3
x e

ipx

v

s

(pẑ)�0[J
z

, (x)]|0i

Next, recall that J
z

= 1
2"zxyM

xy = M

xy, where the last equality follows because the Ms are
antisymmetric. Thus:

J

z

b

†
s

(pẑ)|0i =
Z

d

3
x e

ipx[Mxy

, (x)]�0
u

s

(pẑ)|0i

J

z

d

†
s

(pẑ)|0i =
Z

d

3
x e

ipx

v

s

(pẑ)�0[Mxy

, (x)]|0i

This second line allows us to use the identity given in the problem, but we need to adapt
this identity for use in the first line (see my note in the slides if this is confusing):

[ (x),Mµ⌫ ] = �i(xµ

@

⌫ � x

⌫

@

µ) (x) + S

µ⌫ (x) (39.2.1)

3



Barring, we have:

[ (x),Mµ⌫ ] = �i(xµ

@

⌫ � x

⌫

@

µ) (x) + S

µ⌫ (x)

[M
µ⌫

, (x)] = i(xµ

@

⌫ � x

⌫

@

µ) (x) + (x) Sµ⌫

M is Hermitian. Further, we use 38.15. Thus:

[Mµ⌫

, (x)] = i(xµ

@

⌫ � x

⌫

@

µ) (x) + (x)Sµ⌫ (39.2.2)

These commutators give:

J

z

b

†
s

(pẑ)|0i =
Z

d

3
x e

ipx

⇥
i(x@y � y@

x) (x) + (x)Sxy

⇤
�

0
u

s

(pẑ)|0i

J

z

d

†
s

(pẑ)|0i =
Z

d

3
x e

ipx

v

s

(pẑ)�0 [i(y@x � x@

y) (x)� S

xy (x)] |0i

The first (two) terms involve derivatives with respect to x or y. �

0 is a constant and u(pẑ)
are constant in space, and e

ipz is constant with respect to x or y. Integrating by parts then
will shift the derivative to a constant term which vanishes. We assume that the boundary
conditions are such that the remaining (surface) term from the integration by parts also
vanishes. This gives:

J

z

b

†
s

(pẑ)|0i =
Z

d

3
x e

ipx (x)Sxy

�

0
u

s

(pẑ)|0i

J

z

d

†
s

(pẑ)|0i = �
Z

d

3
x e

ipx

v

s

(pẑ)�0
S

xy (x)|0i

Next we recall:

S

xy =
i

4
[�x

, �

y]

S

xy =
i

4

✓
0 �

x

��

x

0

◆
,

✓
0 �

y

��

y

0

◆�

S

xy =
i

4

✓
�

y

�

x

� �

x

�

y

0
0 �

y

�

x

� �

x

�

y

◆

S

xy = � i

4

✓
[�

x

, �

y

] 0
0 [�

x

, �

y

]

◆

S

xy =
1

2

✓
�

z

0
0 �

z

◆

This gives:

J

z

b

†
s

(pẑ)|0i = 1

2

Z
d

3
x e

ipx (x)

✓
�

z

0
0 �

z

◆
�

0
u

s

(pẑ)|0i

J

z

d

†
s

(pẑ)|0i = �1

2

Z
d

3
x e

ipx

v

s

(pẑ)�0

✓
�

z

0
0 �

z

◆
 (x)|0i
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which is:

J

z

b

†
s

(pẑ)|0i = 1

2

Z
d

3
x e

ipx (x)

✓
�

z

0
0 �

z

◆✓
0 I

I 0

◆
u

s

(pẑ)|0i

J

z

d

†
s

(pẑ)|0i = �1

2

Z
d

3
x e

ipx

v

s

(pẑ)

✓
0 I

I 0

◆✓
�

z

0
0 �

z

◆
 (x)|0i

These two matrices obviously commute. Hence:

J

z

b

†
s

(pẑ)|0i = 1

2

Z
d

3
x e

ipx (x)�0

✓
�

z

0
0 �

z

◆
u

s

(pẑ)|0i

J

z

d

†
s

(pẑ)|0i = �1

2

Z
d

3
x e

ipx

v

s

(pẑ)

✓
�

z

0
0 �

z

◆
�

0 (x)|0i

Next we use 38.12:

J

z

b

†
s

(pẑ)|0i = 1

2

Z
d

3
x e

ipx (x)�0

✓
�

z

0
0 �

z

◆
exp(i⌘pKz)u

s

(0)|0i

J

z

d

†
s

(pẑ)|0i = �1

2

Z
d

3
x e

ipx

v

s

(0) exp(i⌘pKz)

✓
�

z

0
0 �

z

◆
�

0 (x)|0i

What is Kz?

K

z =
i

2
�

z

�

0 =
i

2

✓
�

z 0
0 ��

z

◆

Thus:

J

z

b

†
s

(pẑ)|0i = 1

2

Z
d

3
x e

ipx (x)�0

✓
�

z

0
0 �

z

◆
exp


�1

2
⌘p

✓
�

z 0
0 ��

z

◆�
u

s

(0)|0i

J

z

d

†
s

(pẑ)|0i = �1

2

Z
d

3
x e

ipx

v

s

(0) exp


�1

2
p

✓
�

z 0
0 ��

z

◆�✓
�

z

0
0 �

z

◆
�

0 (x)|0i

It is clear that these two matrices commute. Thus:

J

z

b

†
s

(pẑ)|0i = 1

2

Z
d

3
x e

ipx (x)�0 exp


� i

2
⌘p

✓
�

z 0
0 ��

z

◆�✓
�

z

0
0 �

z

◆
u

s

(0)|0i

J

z

d

†
s

(pẑ)|0i = �1

2

Z
d

3
x e

ipx

v

s

(0)

✓
�

z

0
0 �

z

◆
exp


�1

2
p

✓
�

z 0
0 ��

z

◆�
�

0 (x)|0i

Writing this di↵erently:

J

z

b

†
s

(pẑ)|0i = 1

2

Z
d

3
x e

ipx (x)�0 exp (i⌘pKz)

0

BB@

1 0 0 0
0 �1 0 0
0 0 1 0
0 0 0 �1

1

CCAu

s

(0)|0i

J

z

d

†
s

(pẑ)|0i = �1

2

Z
d

3
x e

ipx

v

s

(0)

0

BB@

1 0 0 0
0 �1 0 0
0 0 1 0
0 0 0 �1

1

CCA exp (i⌘pKz) �0 (x)|0i
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Looking at equation 38.6 and doing the matrix multiplication, we see that the matrix acting
on the spinor gives s times the spinor. Thus:

J

z

b

†
s

(pẑ)|0i = s

2

Z
d

3
x e

ipx (x)�0 exp (i⌘pKz) u
s

(0)|0i

J

z

d

†
s

(pẑ)|0i = �s

2

Z
d

3
x e

ipx

v

s

(0) exp (i⌘pKz) �0 (x)|0i

Using 39.10 and 39.12, we have:

J

z

b

†
s

(pẑ)|0i = 1

2
s b

†
s

(pẑ)|0i

J

z

d

†
s

(pẑ)|0i = �1

2
s d

†
s

(pẑ)|0i

as expected.

Srednicki 39.3.

(a) Show that

U(⇤)

�1
b

s

(~p)U(⇤) =

XXX

s

0

R

ss

0
(⇤, ~p)b

s

0
(⇤

�1
~p)

U(⇤)

�1
d

s

(~p)U(⇤) =

XXX

s

0

e
R

ss

0
(⇤, ~p)d

s

0
(⇤

�1
~p)

and find formulae for R

ss

0
(⇤, ~p) and

˜

R

ss

0
(⇤, ~p) that involve matrix elements of

D(⇤) between appropriate u and v spinors.

Much of this was already done for scalars in problem 3.3. Let’s start from the beginning,
however, since problem 3.3 was very di�cult. We’ll also break this down into manageable
pieces as before.

(i) Evaluate the Fourier transform of the fermionic field operator

Using the four-dimensional Fourier Transform:

U(⇤)�1 (k)U(⇤) = U(⇤)�1

Z
d

4
xe

�ipx (x)U(⇤)

d

4
x is invariant under Lorentz Transformations, so are the constants, and so is the product

of two four-vectors. Hence:

U(⇤)�1 (k)U(⇤) =

Z
d

4
xe

�ipx

U(⇤)�1 (x)U(⇤)

Now we can use equation 36.54:

U(⇤)�1 (k)U(⇤) =

Z
d

4
xe

�ipx

D(⇤) (⇤�1
x)
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Now define y = ⇤�1
x.

U(⇤)�1 (k)U(⇤) =

Z
d

4
xe

�ik⇤y
D(⇤) (y)

In the exponent, we now have k⇤y = k

µ⇤ ⌫

µ

y

⌫

. Let’s now use equation 2.5: this gives
k

µ(⇤�1)⌫
µ

y

⌫

= y⇤�1
k. This gives:

U(⇤)�1 (k)U(⇤) =

Z
d

4
xe

�iy⇤�1
k

D(⇤) (y)

Since the determinant of ⇤ is required to be one by propriety, we have:

U(⇤)�1 (k)U(⇤) =

Z
d

4
ye

�iy⇤�1
k

D(⇤) (y)

Fourier transforming the right-hand side, we obtain:

U(⇤)�1 (k)U(⇤) = D(⇤) (⇤�1
k)

(ii) Verify that  (k) =

PPP
s

2⇡�(p

2
+m

2
)

⇥
✓(p

0
)u

s

(~p)b

s

(~p) + ✓(�p

0
)v

s

(~p)d

†
s

(~p)

⇤

First, how do we know that this is what we need to prove? This is a somewhat organic
process: we look at the solution to problem 3.3 to see the general form that would be helpful
moving forward, and we look at equation 37.30 to see the form to which our expression must
simplify.

We begin the verification with the Fourier Transform:

 (x) =

Z
d

4
k

(2⇡)4
e

ipx (k)

Then we insert the claim:

 (x) =

Z
d

4
p

(2⇡)4
e

ipx

X

s

2⇡�(p2 +m

2)
⇥
✓(p0)u

s

(~p)b
s

(~p) + ✓(�p

0)v
s

(~p)d†
s

(~p)
⇤

which is:

 (x) =
X

s

Z
d

4
p

(2⇡)3
e

ipx

�(p2 +m

2)
⇥
✓(p0)u

s

(~p)b
s

(~p) + ✓(�p

0)v
s

(~p)d†
s

(~p)
⇤

Now recall that we can break down delta functions according to �(g(x)) =
P

x0

�(x�x0)
|g0(x0)| .

Ignoring the parts that are not allowed due to the theta function, this becomes:

 (x) =
X

s

Z
d

4
k

(2⇡)3
e

ipx

"
�(! �

p
p

2 +m

2)

2!
✓(p0)u

s

(~p)b
s

(~p) +
�(! +

p
p

2 +m

2)

2!
✓(�p

0)v
s

(~p)d†
s

(~p)

#

which is:

 (x) =
X

s

Z
d!

f
dpe

ipx

h
�(! �

p
p

2 +m

2)✓(p0)u
s

(~p)b
s

(~p) + �(! +
p

p

2 +m

2)✓(�p

0)v
s

(~p)d†
s

(~p)
i
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The theta functions are no longer necessary, since the signs are appropriately specified by
the delta functions:

 (x) =
X

s

Z
d!

f
dpe

ipx

h
�(! �

p
p

2 +m

2)u
s

(~p)b
s

(~p) + �(! +
p
p

2 +m

2)v
s

(~p)d†
s

(~p)
i

Now we could use the delta function to eliminate k0 from the equation. Instead, let’s continue
to use !, though we now must remember that ! is completely defined by p and m. Further,
let’s define ! to be +

p
k

2 +m

2: this causes ! to become �! in the second term. Thus, our
delta functions give:

 (x) =
X

s

Z
f
dp

⇥
e

ipx

u

s

(~p)b
s

(~p) + e

i!t

e

i~p·~p
v

s

(~p)d†
s

(~p)
⇤

This is a bit strained notation, so let’s redefine the dummy variable in the second term,
~p ! �~p.

 (x) =
X

s

Z
f
dp

⇥
e

ipx

u

s

(~p)b
s

(~p) + e

�ipx

v

s

(~p)d†
s

(~p)
⇤

which is equation 37.30, verifying the claim.

(iii) Take Lorentz Transforms of the result of part (b)

U(⇤)�1 (k)U(⇤) = U(⇤)�1
X

s

2⇡�(p2 +m

2)
⇥
✓(p0)u

s

(~p)b
s

(~p) + ✓(�p

0)v
s

(~p)d†
s

(~p)
⇤
U(⇤)

Let’s start by taking p

0 to be positive. This gives:

U(⇤)�1 (k)U(⇤) = 2⇡�(p2 +m

2)U(⇤)�1
X

s

u

s

(~p)b
s

(~p)U(⇤)

On the left-hand side, we use the result from part (a).

D(⇤) (⇤�1
k) = 2⇡�(p2 +m

2)U(⇤)�1
X

s

u

s

(~p)b
s

(~p)U(⇤)

Now we use the result from part (b) again on the left-hand side:

D(⇤)2⇡�(p2 +m

2)
X

s

u

s

(⇤�1
~p)b

s

(⇤�1
~p) = 2⇡�(p2 +m

2)U(⇤)�1
X

s

u

s

(~p)b
s

(~p)U(⇤)

where the p2 in the delta function is the magnitude of a four-vector, and therefore invariant.

We cancel the factors of 2⇡ and equate the coe�cients of a delta-function (this is allowed;
it’s a Green’s expansion!). This gives:

U(⇤)�1
X

s

u

s

(~p)b
s

(~p)U(⇤) =
X

s

D(⇤)u
s

(⇤�1
~p)b

s

(⇤�1
~p) (39.3.1)
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Now we multiply on the left of both sides by u

s

0(~p). Let’s also reverse the direction of the
equality:

u

s

0(~p)U(⇤)�1
X

s

u

s

(~p)b
s

(~p)U(⇤) = u

s

0(~p)
X

s

D(⇤)u
s

(⇤�1
~p)b

s

(⇤�1
~p)

Recall that the spinors are NOT four-vectors: they are spinors which depend only on the
3-vector ~k. In other words, they are transformed by D(⇤), not by U(⇤). Hence, we can
simply move the spinor on the left hand side past the U(⇤)�1, in order to obtain:

U(⇤)�1
X

s

u

s

0(~p)u
s

(~p)b
s

(~p)U(⇤) = u

s

0(~p)
X

s

D(⇤)u
s

(⇤�1
~p)b

s

(⇤�1
~p)

Now we can use 38.17 (we’ll choose s as our index on the left-hand side – to be consistent,
we’ll relabel on the right hand side as well):

U(⇤)�1
b

s

(~p)U(⇤) =
1

2m
u

s

(~p)
X

s

0

D(⇤)u
s

0(⇤�1
~p)b

s

0(⇤�1
~p)

Rewriting a bit more, we have:

U(⇤)�1
b

s

(~p)U(⇤) =
X

s

0


1

2m
u

s

(~p)D(⇤)u
s

0(⇤�1
~p)

�
b

s

0(⇤�1
~p)

which we write as:
U(⇤)�1

b

s

(~p)U(⇤) =
X

s

0

R

ss

0(⇤, ~p)b
s

0(⇤�1
~p)

What about if we choose p

0 to be negative? Then we have the same thing, with u ! v

and b ! d

†. We can therefore read o↵ the answer:

U(⇤)�1
d

†
s

(~p)U(⇤) =
X

s

0


1

2m
v

s

(~p)D(⇤)v
s

0(⇤�1
~p)

�
d

†
s

0(⇤�1
~p)

Take the Hermitian conjugate of both sides:

U(⇤)�1
d

s

(~p)U(⇤) =
X

s

0


1

2m
v

s

(~p)D(⇤)v
s

0(⇤�1
~p)

�⇤
d

s

0(⇤�1
~p)

which we write as:
U(⇤)�1

d

s

(~p)U(⇤) =
X

s

0

R̃

ss

0(⇤, ~p)d
s

0(⇤�1
~p)
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(b) Show that

˜

R

ss

0
(⇤, ~p) = R

ss

0
(⇤, ~p)

We have to show that:
R

ss

0(⇤, ~p) = R̃

ss

0(⇤, ~p)

which is:
1

2m
u

s

(~p)D(⇤)u
s

0(⇤�1
~p) =

1

2m

⇥
v

s

(~p)D(⇤)v
s

0(⇤�1
~p)
⇤⇤

u

s

(~p)D(⇤)u
s

0(⇤�1
~p) =

⇥
v

s

(~p)D(⇤)v
s

0(⇤�1
~p)
⇤⇤

u

s

(~p)D(⇤)u
s

0(⇤�1
~p) = v

s

0(⇤�1
~p)⇤D(⇤)⇤v

s

(~p)⇤

Recall that the complex conjugate of a spinor is the barred spinor. Thus:

u

s

(~p)D(⇤)u
s

0(⇤�1
~p) = v

s

0(⇤�1
~p)D(⇤)⇤v

s

(~p)

From the form of D(⇤), it is clear that:

u

s

(~p)D(⇤)u
s

0(⇤�1
~p) = v

s

0(⇤�1
~p)D(⇤�1)v

s

(~p)

This is just one number, so we can take the transpose without any di�culty:

u

s

(~p)D(⇤)u
s

0(⇤�1
~p) =

⇥
v

s

0(⇤�1
~p)D(⇤�1)v

s

(~p)
⇤
T

which is:
u

s

(~p)D(⇤)u
s

0(⇤�1
~p) = v

s

(~p)TD(⇤�1)Tv
s

0(⇤�1
~p)T

Now we can insert some identities:

u

s

(~p)D(⇤)u
s

0(⇤�1
~p) = v

s

(~p)TCC�1
D(⇤�1)TCC�1

v

s

0(⇤�1
~p)T

Using 39.28 and its conjugate:

u

s

(~p)D(⇤)u
s

0(⇤�1
~p) = ū

s

(~p)C�1
D(⇤�1)TCu

s

0(⇤�1
~p)

D(⇤) consists of an exponential (an infinite series) of constants and the product of two
gamma matrices. The constants are invariant; the gamma matrices transform according
to equation 38.36. Since there are two gamma matrices, the negative sign cancels; the
transposes also cancel with the transpose in the equation. Thus:

u

s

(~p)D(⇤)u
s

0(⇤�1
~p) = ū

s

(~p)D(⇤)u
s

0(⇤�1
~p)

as expected.

(c) Show that

U(⇤)|p, s, qi =
XXX

s

0

R

⇤
ss

0(⇤
�1

, ~p)|⇤p, s0, qi

where

|p, s,+i = b

†
s

(~p)|0i
|p, s,�i = d

†
s

(~p)|0i
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are single one-particle states.

We have:
U(⇤)|p, s,+i = U(⇤)b†

s

(~p)|0i

We insert the identity:

U(⇤)|p, s,+i = U(⇤)b†
s

(~p)U(⇤)�1
U(⇤)|0i

The U(⇤) operator acting on the vacuum won’t do much:

U(⇤)|p, s,+i = U(⇤)b†
s

(~p)U(⇤)�1|0i (39.3.2)

Equation 39.39 gives:

U(⇤)�1
b

s

(~p)U(⇤) =
X

s

0

R

ss

0(⇤, ~p)b
s

0(⇤�1
~p)

Taking the Hermitian conjugate gives:

U(⇤)�1
b

†
s

(~p)U(⇤) =
X

s

0

R

⇤
ss

0(⇤, ~p)b†
s

0(⇤�1
~p)

Now let’s reverse the direction of the Lorentz Transformation. This will give:

U(⇤)b†
s

(~p)U(⇤)�1 =
X

s

0

R

⇤
ss

0(⇤�1
, ~p)b†

s

0(⇤~p)

Using this in equation (39.3.2) gives:

U(⇤)|p, s,+i =
X

s

0

R

⇤
ss

0(⇤�1
, ~p)b†

s

0(⇤~p)|0i

This gives:
U(⇤)|p, s,+i =

X

s

0

R

⇤
ss

0(⇤�1
, ~p)|⇤p, s,+i

Absolutely nothing will change if we take + ! �. Combining both cases, we have:

U(⇤)|p, s, qi =
X

s

0

R

⇤
ss

0(⇤�1
, ~p)|⇤p, s, qi

as expected.

Note: this is one of the hardest problems so far. I spent a lot of time trying to think through

the subtleties and provide a detailed explanation. If anything is unclear, please feel free to

e-mail.

Srednicki 39.4. The Spin Statistics Theorem for spin-one-half particles. We

will follow the proof for spin-zero particles in section 4. We start with b

s

(~p) and

11



b

†
s

(~p) as the fundamental objects; we take them to have either commutation (-)

or anticommutation (+) relations of the form:

[b

s

(~p), b

s

0
(

~

p

0
)]⌥ = 0

[b

†
s

(~p), b

†
s

0(~p
0
)]⌥ = 0

[b

s

(~p), b

†
s

0(~p
0
)]⌥ = (2⇡)

3
2!�

3
(~p� ~

p

0
)�

ss

0

Define

 

+
(x) =

XXX

s=±

ZZZ
f
dp b

s

(~p)u

s

(~p)e

ipx

 

�
(x) =

XXX

s=±

ZZZ
f
dp b

†
s

(~p)v

s

(~p)e

�ipx

(a) Show that U(⇤)

�1
 

±
(x)U(⇤) = D(⇤) 

±
(⇤

�1
x)

We have:

U(⇤)�1 +(x)U(⇤) = U(⇤)�1
X

s=±

Z
f
dp b

s

(~p)u
s

(~p)eipxU(⇤)

The exponential, as the invariant product of two four-vectors, an the Lorentz-Invariant phase
space, are invariant as their names suggest. Thus,

U(⇤)�1 +(x)U(⇤) =
X

s=±

Z
f
dp U(⇤)�1

b

s

(~p)u
s

(~p)U(⇤)eipx

Unfortunately, we need to use equation (39.3.1). If you did not do problem 39.3(a), there’s
nothing for it now except to start at the beginning until you achieve equation (39.3.1). Since
there is nothing that should be added or subtracted to my derivation above, I won’t redo
the proof, I’ll just use the equation here.

This gives:

U(⇤)�1 +(x)U(⇤) = D(⇤)
X

s=±

Z
f
dp b

s

(⇤�1
~p)u

s

(⇤�1
~p)eipx

Next we’ll change ~p ! ⇤~p; this will not change the di↵erential because it’s Lorentz-Invariant.
Thus:

U(⇤)�1 +(x)U(⇤) = D(⇤)
X

s=±

Z
f
dp b

s

(~p)u
s

(~p)ei⇤px

Next we’ll play with the indices: ⇤µ

⌫

p

⌫

x

µ

= (⇤�1) µ

⌫

p

⌫

x

µ

= p⇤�1
x, where the first equality

follows by equation 2.5. Then:

U(⇤)�1 +(x)U(⇤) = D(⇤)
X

s=±

Z
f
dp b

s

(~p)u
s

(~p)eip⇤
�1

x

which is:
U(⇤)�1 +(x)U(⇤) = D(⇤) +(⇤�1

x)
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Nothing in our argument is changed if we change the b to b

† or the u to a v. Are we allowed
to make this substitution in equation (39.3.1)? Yes: examine the proof of (39.3.1). At the
beginning of part (iii) we took p

0 to be positive; now we take it to be negative. This allows
us to swap u $ v, which is good, and b $ d

†. To get from d

† to b

†, we simply consider the
case of a Majorana fermion, proving the identity (remember the identity is just a relation
between a bunch of spinors; considering the case of a Majorana fermion does not mean that
the identity only holds in the case of a Majorana fermion). Thus:

U(⇤)�1 ±(x)U(⇤) = D(⇤) ±(⇤�1
x)

as expected.

(b) Show that [ 

+
(x)]

†
= [ 

�
(x)]

TC�. Thus an hermitian interaction term

in the Lagrangian must involve both  

+
and  

�
.

We have:

[ +(x)]† =
X

s

Z
f
dp e

�ipx

u

s

(~p)†b
s

(~p)†

This is:

[ +(x)]† =
X

s

Z
f
dp e

�ipx[u
s

(~p)]⇤T b
s

(~p)†

Using equation 38.38:

[ +(x)]† =
X

s

Z
f
dp e

�ipx[C�v
s

(~p)]T b
s

(~p)†

which is:

[ +(x)]† =
X

s

Z
f
dp e

�ipx

v

s

(~p)T�TCT

b

s

(~p)†

� is symmetric. CT = �C, but we kill o↵ the negative sign by anticommuting with the �

(equations 38.34 and 38.35). Thus:

[ +(x)]† =
X

s

Z
f
dp e

�ipx

v

s

(~p)TC�b
s

(~p)†

Remember the operator will commute with all matrices. Thus:

[ +(x)]† =
X

s

Z
f
dp e

�ipx

v

s

(~p)T b
s

(~p)†C�

which is:
[ +(x)]† = [ �(x)]TC�

as expected.

(c) Show that [ 

+
↵

(x), 

�
�

(y)]⌥ 6= 0 for (x� y)

2
> 0.
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We have:

[ +
s

(x), 0�
s

(y)]⌥ =
X

s

X

s

0

Z
f
dp

f
dp

0
e

i(px�p

0
y)[u

s

(~p)]
↵

[v0
s

(~p0)]
�

[b
s

(~p), b0†
s

(~p0)]⌥

Using equation 39.43:

[ +
↵

(x), �
�

(y)]⌥ =
X

s

Z
f
dp e

ip(x�y)[u
s

(~p)]
↵

[v
s

(~p)]
�

At the risk of stating the obvious, let me comment that ↵ and � do not represent the spin
indices, but rather the component of the field spinor. Now we recall equtaion 38.37 and
38.38:

v

s

(~p) = Cu
s

(~p)T =
�
u

s

(~p)CT

�
T

= � (u
s

(~p)C)T

) v

s

(~p)
�

= � [u
s

(~p)C]
�

Inserting this into our expression:

[ +
↵

(x), �
�

(y)]⌥ = �
X

s

Z
f
dp e

ip(x�y) [u
s

(~p)u
s

(~p)C]
↵�

Now we use equation 38.23:

[ +
↵

(x), �
�

(y)]⌥ = �
Z

f
dp e

ip(x�y) [( 6 p�m)C]
↵�

(39.4.1)

Now recall that the momentum operator has nothing to do with the momentum integral; it
is simply p = �i@

x

. Thus:

[ +
↵

(x), �
�

(y)]⌥ = � [(i 6 @
x

+m)C]
↵�

Z
f
dp e

ip(x�y)

Now use equation 4.12:

[ +
↵

(x), �
�

(y)]⌥ = � m

4⇡2
r

[(i 6 @
x

+m)C]
↵�

K1(mr)

As in chapter 4, we argue that this is nonzero because K1(mr) is never zero when r

2 =
(x� y)2 > 0 – even if the matrix element in the prefactor is zero.

(d) Show that [ 

+
↵

, 

�
�

(y)] = �[ 

+
�

(y), 

�
↵

(x)]± for (x� y)

2
> 0.

We go back to equation (39.4.1):

[ +
↵

(x), �
�

(y)]⌥ = �
Z

f
dp e

ip(x�y) [( 6 p�m)C]
↵�

We write this as:

[ +
↵

(x), �
�

(y)]⌥ = �
Z

f
dp e

ip(x�y)
⇥
( 6 pC)T �mCT

⇤
�↵
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[ +
↵

(x), �
�

(y)]⌥ = �
Z

f
dp e

ip(x�y)
⇥
(CT ( 6 p)T �mCT

⇤
�↵

Using equation 38.34:

[ +
↵

(x), �
�

(y)]⌥ = �
Z

f
dp e

ip(x�y)
⇥
(�Cp

µ

(�µ)T +mC
⇤
�↵

[ +
↵

(x), �
�

(y)]⌥ = �
Z

f
dp e

ip(x�y)
⇥
(�p

µ

C(�µ)T +mC
⇤
�↵

Using equation 38.36:

[ +
↵

(x), �
�

(y)]⌥ = �
Z

f
dp e

ip(x�y) [(p
µ

(�µ)C +mC]
�↵

which is:

[ +
↵

(x), �
�

(y)]⌥ = �
Z

f
dp e

ip(x�y) [( 6 p+m)C]
�↵

Now we use the fact that (x � y)2 > 0: this is a spacelike separation between the two
“events,” meaning that we can find a frame in which the two events are simultaneous. Thus:

[ +
↵

(x), �
�

(y)]⌥ = �
Z

f
dp e

i~p·(~x�~y) [( 6 p+m)C]
�↵

which is:

[ +
↵

(x), �
�

(y)]⌥ = �
Z

f
dp e

i(�~p)·(~y�~x) [( 6 p+m)C]
�↵

Now we switch the integration variable from ~p to �~p; this does not change the integration
measure because we’re still integrating over the same space. Thus:

[ +
↵

(x), �
�

(y)]⌥ = �
Z

f
dp e

i(~p)·(~y�~x) [(� 6 p+m)C]
�↵

Now we distribute the negative sign and reinsert the temporal part of the index:

[ +
↵

(x), �
�

(y)]⌥ =

Z
f
dp e

ip(y�x) [( 6 p�m)C]
�↵

The right-hand side of this is, by equation (39.4.1):

[ +
↵

(x), �
�

(y)]⌥ = [ +
�

(y), �
↵

(x)]⌥

as expected.

(e) Consider  (x) =  

+
(x)+� 

�
(x), where � is an arbitrary complex number,

and evaluate both [ 

↵

(x), 

�

y)]⌥ and [ 

↵

(x), 

�

(y)]⌥ for (x � y)

2
> 0. Show

these can both vanish if and only if |�| = 1 and we use anticommutators.

[ 
↵

(x), 
�

(y)]⌥ =
⇥
 +

↵

(x) + � �
↵

(x), +
�

(y) + � �
�

(y)
⇤
⌥

15



Using 39.43, we can simplify this as:

[ 
↵

(x), 
�

(y)]⌥ = �[ +
↵

(x), �
�

(y)]⌥ + �[ �
↵

(x), +
�

(y)]⌥

We use the results of part (d):

[ 
↵

(x), 
�

(y)]⌥ = �[ +
↵

(x), �
�

(y)]⌥ � �[ �
�

(y), +
↵

(x)]⌥

Of course, [A,B] = AB � BA = �(BA � AB) = �[B,A] and {A,B} = AB + BA =
BA+ AB = {B,A}. This gives:

[ 
↵

(x), 
�

(y)]⌥ = �[ +
↵

(x), �
�

(y)]⌥ ± �[ +
↵

(x), �
�

(y)]⌥

[ 
↵

(x), 
�

(y)]⌥ = �(1± 1)[ +
↵

(x), �
�

(y)]⌥

Using the result of part (c), there is no way that these will commute. They will anticommute
if and only if we accept canonical anticommutation relations.

For the second commutator in question, we have:

[ 
↵

(x), 
�

(x)]⌥ = [ 
↵

(x), †
�

(y)�]⌥

[ 
↵

(x), 
�

(x)]⌥ = [ +
↵

(x) + � �
↵

(x), +
�

(y)†� + �

⇤ �
�

(y)†�]⌥

Multiplying these out, the first and last terms have only bs; the second and third have only
b

†s. Thus, the only pairings that will not vanish are the first and third, and the second and
fourth:

[ 
↵

(x), 
�

(x)]⌥ = [ +
↵

(x), +
�

(y)†�] + |�2|[ �
↵

(x), �
�

(y)†�]

Using equation 39.44:

[ 
↵

(x), 
�

(x)]⌥ =
X

s

X

s

0

Z
f
dp

f
dp

0
u

s

(~p)
↵

u

s

0(~p)
�

e

i(px�p

0
y)[b

s

(~p), b†
s

(~p)]⌥

+|�|2
X

s

X

s

0

Z
f
dp

f
dp

0
v

s

(~p)
↵

v

s

0(~p)
�

e

�i(px�p

0
y)[b†

s

(~p), b
s

(~p)]⌥

As in part (d), we note that [A,B]⌥ = ⌥[B,A]⌥. Thus:

[ 
↵

(x), 
�

(x)]⌥ =
X

s

X

s

0

Z
f
dp

f
dp

0
u

s

(~p)
↵

u

s

0(~p)
�

e

i(px�p

0
y)[b

s

(~p), b†
s

(~p)]⌥

⌥|�|2
X

s

X

s

0

Z
f
dp

f
dp

0
v

s

(~p)
↵

v

s

0(~p)
�

e

�i(px�p

0
y)[b

s

(~p), b†
s

(~p)]⌥

Using the commutator and equation 39.43:

[ 
↵

(x), 
�

(x)]⌥ =
X

s

Z
f
dp u

s

(~p)
↵

u

s

0(~p)
�

e

ip(x�y) ⌥ |�|2
X

s

Z
f
dp v

s

(~p)
↵

v

s

0(~p)
�

e

�ip(x�y)
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Now we use 38.23:

[ 
↵

(x), 
�

(x)]⌥ =

Z
f
dp (� 6 p+m)

↵�

e

ip(x�y) ⌥ |�|2
Z

f
dp (� 6 p�m)

↵�

e

�ip(x�y)

In the second term, we take the ~

k ! �~k; as usual this does not a↵ect the integration
measure. Thus:

[ 
↵

(x), 
�

(x)]⌥ =

Z
f
dp (� 6 p+m)

↵�

e

ip(x�y) ⌥ |�|2
Z

f
dp ( 6 p�m)

↵�

e

ip(x�y)

which is:

[ 
↵

(x), 
�

(x)]⌥ = (1± |�|2)
Z

f
dp (� 6 p+m)

↵�

e

ip(x�y)

Now 6 p = p

µ

�

µ

: as the contraction of two four-vectors, the product is invariant as we
integrate over the Lorentz-Invariant phase space. Thus,

[ 
↵

(x), 
�

(x)]⌥ = (1± |�|2)(� 6 p+m)
↵�

Z
f
dp e

ip(x�y)

p

µ

= �i@

µ

. Further, we use equation 4.12:

[ 
↵

(x), 
�

(x)]⌥ = (1± |�|2)(i 6 @ +m)
↵�

C(r)

which will vanish only if and only if we choose anticommutators and require |�| = 1.
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