Srednicki Chapter 38 QFT Problems & Solutions

A. George

March 9, 2013

Srednicki 38.1. Use equation 38.12 to compute $u_s(p)$ and $v_s(p)$ explicitly. Hint: Show that the matrix $2i\hat{p} \cdot K$ has eigenvalues ± 1 and that, for any matrix A with eigenvalues ± 1 , $e^{cA} = \cosh c + (\sinh c)A$, where c is an arbitrary complex number.

We have:

$$2iK^{j} = -\gamma^{i}\gamma^{0}$$

$$2iK^{j} = -\begin{pmatrix} 0 & \gamma^{j} \\ -\gamma^{j} & 0 \end{pmatrix}\begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix} = \begin{pmatrix} -\sigma^{j} & 0 \\ 0 & \sigma^{j} \end{pmatrix}$$

At the risk of stating the obvious, note that this represents three matrices, each one indicated by j. Each of these matrices is has eigenvalues ± 1 . Any linear combination (of unit magnitude) of these matrices will similarly have eigenvalues ± 1 . Thus, $2i\hat{p} \cdot K$ will be a single matrix with eigenvalues ± 1 .

Next, we simply expand:

$$\exp(cA) = \sum_{n \text{ even}} \frac{(cA)^n}{n!} + \sum_{n \text{ odd}} \frac{(cA)^n}{n!}$$

Working in a basis where A is diagonal, we have $A^2 = 1$ (recall that we defined A to have eigenvalues ± 1). Then:

$$\exp(cA) = \sum_{\text{n even}} \frac{(c)^n}{n!} + \sum_{\text{n odd}} \frac{(c)^n}{n!} A$$

This gives:

$$\exp(cA) = \cosh c + (\sinh c)A$$

Combining these results, we have:

$$\exp(i\eta \hat{p} \cdot K) = \cosh\left(\frac{\eta}{2}\right) + \sinh\left(\frac{\eta}{2}\right) \begin{pmatrix} -\hat{p} \cdot \vec{\sigma} & 0\\ 0 & \hat{p} \cdot \vec{\sigma} \end{pmatrix}$$

We can write this as one matrix:

$$\exp(i\eta\hat{p}\cdot K) = \begin{pmatrix} \cosh(\eta/2) - \sinh(\eta/2)\hat{p}\cdot\vec{\sigma} & 0\\ 0 & \cosh(\eta/2) + \sinh(\eta/2)\hat{p}\cdot\vec{\sigma} \end{pmatrix}$$
(38.1.1)

To simplify this, we need to do something with $\hat{p} \cdot \vec{\sigma}$. Let's expand:

$$\begin{split} \hat{p} \cdot \vec{\sigma} &= p_x \sigma_1 + p_y \sigma_2 + p_z \sigma_3 \\ &= p \sin \theta \cos \phi \ \sigma_1 + p \sin \theta \sin \phi \ \sigma_2 + p \cos \theta \ \sigma_3 \\ &= p \sin \theta \cos \phi \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + p \sin \theta \sin \phi \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} + p \cos \theta \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \\ &= p \sin \theta \begin{pmatrix} 0 & \cos \phi - i \sin \phi \\ \cos \phi + i \sin \phi & 0 \end{pmatrix} + p \cos \theta \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \\ &= p \sin \theta \begin{pmatrix} 0 & e^{-i\phi} \\ e^{i\phi} & 0 \end{pmatrix} + p \cos \theta \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \\ &= p \begin{pmatrix} \cos \theta & \sin \theta e^{-i\phi} \\ \sin \theta e^{i\phi} & -\cos \theta \end{pmatrix} \end{split}$$

Combining this with equation (38.1.1), we have:

$$\exp(i\eta\hat{p}\cdot K) = \begin{pmatrix} \cosh(\eta/2) - p\sinh(\eta/2)\cos\theta & -p\sinh(\eta/2)\sin\theta e^{-i\phi} & 0 & 0 \\ -p\sinh(\eta/2)\sin\theta e^{i\phi} & \cosh(\eta/2) + p\sinh(\eta/2)\cos\theta & 0 & 0 \\ 0 & 0 & \cosh(\eta/2) + p\sinh(\eta/2)\cos\theta & p\sinh(\eta/2)\sin\theta e^{-i\phi} \\ 0 & 0 & p\sinh(\eta/2)\sin\theta e^{i\phi} & \cosh(\eta/2) - p\sinh(\eta/2)\cos\theta \end{pmatrix}$$

Now we just have to multiply some matrices, according to equation 38.12. The result is:

$$u_{+}(\vec{p}) = \sqrt{m} \begin{pmatrix} \cosh(\eta/2) - p \sinh(\eta/2) \cos \theta \\ -p \sinh(\eta/2) \sin \theta e^{i\phi} \\ \cosh(\eta/2) + p \sinh(\eta/2) \cosh \theta \\ p \sinh(\eta/2) \sin \theta e^{i\phi} \end{pmatrix}$$

$$u_{-}(\vec{p}) = \sqrt{m} \begin{pmatrix} -p \sinh(\eta/2) \sin \theta e^{-i\phi} \\ \cosh(\eta/2) + p \sinh(\eta/2) \cos \theta \\ p \sinh(\eta/2) \sin \theta e^{-i\phi} \\ \cosh(\eta/2) - p \sinh(\eta/2) \cos \theta \end{pmatrix}$$

$$v_{+}(\vec{p}) = \sqrt{m} \begin{pmatrix} -p \sinh(\eta/2) \sin \theta e^{-i\phi} \\ \cosh(\eta/2) + p \sinh(\eta/2) \cos \theta \\ -p \sinh(\eta/2) \sin \theta e^{-i\phi} \\ -\cosh(\eta/2) + p \sinh(\eta/2) \cos \theta \end{pmatrix}$$

$$v_{-}(\vec{p}) = \sqrt{m} \begin{pmatrix} -\cosh(\eta/2) + p\sinh(\eta/2)\cos\theta \\ p\sinh(\eta/2)\sin\theta e^{i\phi} \\ \cosh(\eta/2) + p\sinh(\eta/2)\cosh\theta \\ p\sinh(\eta/2)\sin\theta e^{i\phi} \end{pmatrix}$$

Srednicki 38.2. Verify equation 38.15.

We have:

$$\gamma^{0} = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}$$
$$\gamma^{i} = \begin{pmatrix} 0 & \sigma^{i} \\ -\sigma^{i} & 0 \end{pmatrix}$$

So:

$$\gamma^{0\dagger} = \gamma^0$$
$$\gamma^{i\dagger} = -\gamma^i$$

since the Pauli matrices are Hermitian.

Then we have:

$$\overline{\gamma^0} = \beta \gamma^0 \beta$$
$$\overline{\gamma^i} = -\beta \gamma^i \beta$$

which is:

$$\overline{\gamma^0} = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix} \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix} \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}$$

$$\overline{\gamma^i} = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix} \begin{pmatrix} 0 & -\sigma^i \\ \sigma^i & 0 \end{pmatrix} \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}$$

Doing the multiplication, we have:

$$\frac{\overline{\gamma^0}}{\overline{\gamma^i}} = \gamma^0$$

$$\overline{\gamma^i} = \gamma^i$$

as expected.

Next for $S^{\mu\nu}$:

$$\overline{S^{\mu\nu}} = \beta (S^{\mu\nu})^{\dagger} \beta$$

We have:

$$S^{\mu\nu} = \frac{i}{4} \left(\begin{array}{cc} \sigma^{\mu} \overline{\sigma}^{\nu} - \sigma^{\nu} \overline{\sigma}^{\mu} & 0 \\ 0 & \overline{\sigma}^{\mu} \sigma^{\nu} - \overline{\sigma}^{\nu} \sigma^{\mu} \end{array} \right)$$

The Pauli matrices (and the identity matrix) are Hermitian, so:

$$(S^{\mu\nu})^{\dagger} = -\frac{i}{4} \left(\begin{array}{cc} \overline{\sigma}^{\nu} \sigma^{\mu} - \overline{\sigma}^{\mu} \sigma^{\nu} & 0 \\ 0 & \sigma^{\nu} \overline{\sigma}^{\mu} - \sigma^{\mu} \overline{\sigma}^{\nu} \end{array} \right)$$

Thus:

$$\begin{split} (S^{\mu\nu})^\dagger &= \frac{i}{4} \left(\begin{array}{cc} \overline{\sigma}^\mu \sigma^\nu - \overline{\sigma}^\nu \sigma^\mu & 0 \\ 0 & \sigma^\mu \overline{\sigma}^\nu - \sigma^\nu \overline{\sigma}^\mu \end{array} \right) \\ \overline{S^{\mu\nu}} &= \frac{i}{4} \left(\begin{array}{cc} 0 & I \\ I & 0 \end{array} \right) \left(\begin{array}{cc} \overline{\sigma}^\mu \sigma^\nu - \overline{\sigma}^\nu \sigma^\mu & 0 \\ 0 & \sigma^\mu \overline{\sigma}^\nu - \sigma^\nu \overline{\sigma}^\mu \end{array} \right) \left(\begin{array}{cc} 0 & I \\ I & 0 \end{array} \right) \end{split}$$

$$\overline{S^{\mu\nu}} = \frac{i}{4} \begin{pmatrix} \sigma^{\mu} \overline{\sigma}^{\nu} - \sigma^{\nu} \overline{\sigma}^{\mu} & 0 \\ 0 & \overline{\sigma}^{\mu} \sigma^{\nu} - \overline{\sigma}^{\nu} \sigma^{\mu} \end{pmatrix}
\overline{S^{\mu\nu}} = S^{\mu\nu}$$

Next for $i\gamma^5$:

$$\overline{i\gamma^5} = (-i) \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix} \begin{pmatrix} -I & 0 \\ 0 & I \end{pmatrix} \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}$$

Multiplying the matrices gives:

$$\overline{i\gamma^5} = i\gamma^5$$

as expected. Note that the *i* contributed a minus sign, so it follows that $\overline{\gamma^5} = -\gamma^5$.

Next for $\gamma^{\mu}\gamma_5$:

$$\overline{\gamma^{\mu}\gamma_{5}} = \beta \gamma_{5}^{\dagger} \gamma^{\mu\dagger} \beta$$

 $\beta^2 = I$, so:

$$\overline{\gamma^{\mu}\gamma_{5}} = \beta\gamma_{5}^{\dagger}\beta\beta\gamma^{\mu\dagger}\beta$$

We showed above that $\overline{\gamma^{\mu}} = \gamma^{\mu}$, and that $\overline{\gamma^5} = -\gamma^5$. Thus:

$$\overline{\gamma^{\mu}\gamma_5} = -\gamma_5\gamma^{\mu}$$

Now, note that $\gamma_5 = i\gamma^0\gamma^1\gamma^2\gamma^3$. The γ^{μ} matrix will commute with itself but anticommute with the other three. Thus $\{\gamma^{\mu}, \gamma^5\} = 0$, and:

$$\overline{\gamma^{\mu}\gamma_5} = \gamma^{\mu}\gamma_5$$

as expected.

Now for $\overline{i\gamma_5 S^{\mu\nu}}$. We have:

$$\overline{i\gamma_5 S^{\mu\nu}} = -i\beta\gamma_5\beta\beta S^{\mu\nu}\beta$$

where the two βs in the middle are allowed since $\beta^2 = I$. Then,

$$\overline{i\gamma_5 S^{\mu\nu}} = -i\beta\gamma_5\beta\beta S^{\mu\nu}\beta$$

which is (remember that the gamma matrices including γ_5 are Hermitian, so we can add or remove the dagger at will):

$$\overline{i\gamma_5 S^{\mu\nu}} = -i\overline{\gamma_5} \overline{S^{\mu\nu}}$$

The γ_5 introduces a negative sign as discussed above. We also showed above that $S^{\mu\nu}$ is unchanged under this operation. This gives:

$$\overline{i\gamma_5 S^{\mu\nu}} = i\gamma_5 S^{\mu\nu}$$

Srednicki 38.3. Verify equation 38.22.

Subtracting 38.20 from 38.19:

$$\gamma^{\mu} \not p - \not p' \gamma^{\mu} = -p^{\mu} - 2iS^{\mu\nu}p_{\nu} + p'^{\mu} - 2iS^{\mu\nu}p'_{\nu}$$

We sandwich both sides between $\overline{u}_{s'}(p)$ and $v_s(-p)$ (we will neglect the spinor indices until the end; they are irrelevant to the problem):

$$\overline{u}(p) \left[\gamma^{\mu} \not p - \not p' \gamma^{\mu} \right] v(-p) = \overline{u}(p) \left[-p^{\mu} - 2iS^{\mu\nu}p_{\nu} + p'^{\mu} - 2iS^{\mu\nu}p'_{\nu} \right] v(-p)$$

Using equation 38.1:

$$\overline{u}(p) \left[-m\gamma^{\mu} - \not p'\gamma^{\mu} \right] v(-p) = \overline{u}(p) \left[-p^{\mu} - 2iS^{\mu\nu}p_{\nu} + p'^{\mu} - 2iS^{\mu\nu}p'_{\nu} \right] v(-p)$$

Next note that equation 38.16 gives:

$$pv(p) = mv(p)$$

$$\implies (-p)v(-p) = mv(-p)$$

$$\implies pv(-p) = -mv(-p)$$
(38.3.1)

Hence,

$$\overline{u}(p) \left[-m\gamma^{\mu} + m\gamma^{\mu} \right] v(-p) = \overline{u}(p) \left[-p^{\mu} - 2iS^{\mu\nu}p_{\nu} + p'^{\mu} - 2iS^{\mu\nu}p'_{\nu} \right] v(-p)$$

This gives:

$$\overline{u}(p) \left[-p^{\mu} - 2iS^{\mu\nu}p_{\nu} + p'^{\mu} - 2iS^{\mu\nu}p'_{\nu} \right] v(-p) = 0$$

Next we take p = p':

$$\overline{u}(p) \left[-4iS^{\mu\nu}p_{\nu} \right] v(-p) = 0$$

Dropping the constants:

$$\overline{u}(p) \left[S^{\mu\nu} p_{\nu} \right] v(-p) = 0$$

Using 36.53:

$$\overline{u}(p) \left[\left(\begin{array}{cc} -\sigma^{\nu} & 0 \\ 0 & \sigma^{\nu} \end{array} \right) p_{\nu} \right] v(-p) = 0$$

We can write this as:

$$\overline{u}(p) \left[\left(\begin{array}{cc} 0 & I \\ I & 0 \end{array} \right) \left(\begin{array}{cc} 0 & \sigma^{\nu} \\ -\sigma^{\nu} & 0 \end{array} \right) p_{\nu} \right] v(-p) = 0$$

These are gamma matrices:

$$\overline{u}(p) \left[\gamma^0 \gamma^{\nu} p_{\nu} \right] v(-p) = 0$$

Using equation 37.24:

$$\overline{u}(p)\gamma^0 \not p v(-p) = 0$$

Using equation (38.3.1):

$$-\overline{u}(p)\gamma^0 mv(-p) = 0$$

Dropping the constants:

$$\overline{u}_{s'}(p)\gamma^0 v_s(-p) = 0$$

Taking the Hermitian conjugate:

$$\left[\overline{u}(p)\gamma^0v(-p)\right]^{\dagger} = 0$$

This gives:

$$v(-p)^{\dagger} \gamma^{0\dagger} \overline{u}(p)^{\dagger} = 0$$

 γ^0 is Hermitian. On the other terms, we use 38.7 (multiplying on the right by β). The result is:

$$\overline{v}(-p)\beta\gamma^0\beta u(p) = 0$$

Recall that β and γ^0 are the same (we keep them separate only to maintain the integrity of the indices). It is therefore obvious that they commute. Thus

$$\overline{v}(-p)\beta\beta\gamma^0 u(p) = 0$$

 $\beta^2 = I$, so, reinserting the indices:

$$\overline{v}_s(-p)\gamma^0 u_{s'}(p) = 0$$

Finally, we let $p \to -p$ and $s \leftrightarrow s'$:

$$\overline{v}_{s'}(p)\gamma^0 u_s(-p) = 0$$

Srednicki 38.4. Derive the Gordon identities:

$$\overline{u}_{s'}(p') \left[(p'+p)^{\mu} - 2i S^{\mu
u} (p'-p)_{
u}
ight] \gamma_5 u_s(p) = 0$$

$$\overline{v}_{s'}(p') \left[(p'+p)^{\mu} - 2i S^{\mu
u} (p'-p)_{
u}
ight] \gamma_5 v_s(p) = 0$$

The technique here is the same as in the previous problem. We start by adding 38.19 and 38.20:

$$\gamma^{\mu} \not\!\! p + \not\!\! p' \gamma^{\mu} = -p^{\mu} - p'^{\mu} - 2iS^{\mu\nu}p_{\nu} + 2iS^{\mu\nu}p'_{\nu}$$

We multiply on the right by γ_5 , then sandwich between $\overline{u}(p')$ and u(p). Thus:

$$\overline{u}(p') \left[\gamma^{\mu} \not p + \not p' \gamma^{\mu} \right] \gamma_5 u(p) = \overline{u}(p') \left[-p^{\mu} - p'^{\mu} - 2iS^{\mu\nu}p_{\nu} + 2iS^{\mu\nu}p'_{\nu} \right] \gamma_5 u(p)$$

Using equation 38.16:

$$\overline{u}(p') \left[\gamma^{\mu} \not p - m \gamma^{\mu} \right] \gamma_5 u(p) = -\overline{u}(p') \left[p^{\mu} + p'^{\mu} + 2i S^{\mu\nu} (p_{\nu} - p'_{\nu}) \right] \gamma_5 u(p)$$

Recall that γ^5 consists of four gamma matrices: γ^{μ} will anticommute with three of them and commute with one (itself):

$$\overline{u}(p') \left[-\gamma^{\mu} \gamma_5 \not p - m \gamma^{\mu} \gamma_5 \right] \gamma_5 u(p) = -\overline{u}(p') \left[p^{\mu} + p'^{\mu} + 2i S^{\mu\nu} (p_{\nu} - p'_{\nu}) \right] \gamma_5 u(p)$$

Using 38.1:

$$\overline{u}(p') \left[m \gamma^{\mu} \gamma_5 - m \gamma^{\mu} \gamma_5 \right] \gamma_5 u(p) = -\overline{u}(p') \left[p^{\mu} + p'^{\mu} + 2i S^{\mu\nu} (p_{\nu} - p'_{\nu}) \right] \gamma_5 u(p)$$

This left side vanishes:

$$-\overline{u}(p') [p^{\mu} + p'^{\mu} + 2iS^{\mu\nu}(p_{\nu} - p'_{\nu})] \gamma_5 u(p) = 0$$

Dropping the constant and reordering:

$$\overline{u}(p') [p^{\mu} + p'^{\mu} - 2iS^{\mu\nu}(p'-p)_{\nu}] \gamma_5 u(p) = 0$$

For the remaining identity, we repeat this with $u \leftrightarrow v$. We see from 38.1 and 38.16 that the result will be the same up to a minus sign; since there are two minus signs, there is no net result. Thus:

$$\overline{v}(p') [p^{\mu} + p'^{\mu} - 2iS^{\mu\nu}(p'-p)_{\nu}] \gamma_5 v(p) = 0$$