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Srednicki 36.1. Using the results of problem 2.9, show that, for a rotation by an
angle θ about the z axis, we have:

D(Λ) = exp (− iθS12)

and that, for a boost by rapidity η in the z direction, we have

D(Λ) = exp (− iηS30)

In problem 2.9, we showed this is true for the vector representation. It must therefore be
true for all other representations, including this spinor representation.

Srednicki 36.2. Verify that equation 36.46 is consistent with equation 36.43.

Equation 36.46 is:
γ5 = iγ0γ1γ2γ3

Using equation 36.39:

γ5 = i

(
0 I
I 0

)(
0 σ1
−σ1 0

)(
0 σ2
−σ2 0

)(
0 σ3
−σ3 0

)
Doing the multiplication:

γ5 = i

(
−σ1 0

0 σ1

)(
−σ2σ3 0

0 −σ2σ3

)
This gives:

γ5 = i

(
σ1σ2σ3 0

0 −σ1σ2σ3

)
Now recall that −iσ1σ2σ3 = I. Then:

γ5 =

(
−I 0
0 I

)
which is equation 36.43.
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Srednicki 36.3.

(a) Prove the Fierz Identities(
χ†1σ

µχ2

)(
χ†3σµχ4

)
= −2(χ†1χ

†
3)(χ2χ4)(

χ†1σ
µχ2

)(
χ†3σµχ4

)
= (χ†1σ

µχ4)(χ
†
3σµχ2)

Recall that the right-handed fields are always written as Hermitian Conjugates of left-handed
fields. Thus, we insert the indices:(

χ†1σ
µχ2

)(
χ†3σµχ4

)
=
(
χ†1ȧσ

µȧaχ2a

)(
χ†3ċσ

ċc
µ χ

c
4

)
This is index notation, so we can move these around as we like:(

χ†1σ
µχ2

)(
χ†3σµχ4

)
= σċcµ σ

µȧaχ†1ȧχ2aχ
†
3ċχ

c
4

Now we use equation 35.4:(
χ†1σ

µχ2

)(
χ†3σµχ4

)
= −2εacεȧċχ†1ȧχ2aχ

†
3ċχ

c
4

Now we use the Levi-Cevita symbol to raise the indices (recall that the Levi-Cevita symbol
is the spinor analog of the metric). We also move them around at will. Then:(

χ†1σ
µχ2

)(
χ†3σµχ4

)
= −2χ†ċ1 χ3ċχ2aχ

a
4

Now we drop the indices since this are just multiplied:(
χ†1σ

µχ2

)(
χ†3σµχ4

)
= −2

(
χ†1χ

†
3

)
(χ2χ4)

Now we want to get back where we started with 2 ↔ 4. We know that χ2χ4 = χ4χ2.
[If you’re confused about why the fields seem to commute when fermions should obviously
anticommute, see equation 35.25.] Then:(

χ†1σ
µχ2

)(
χ†3σµχ4

)
= −2

(
χ†1χ

†
3

)
(χ4χ2)

This shows that the right hand side of equation 36.58 is invariant under this relabeling. It
follows that the left hand side of equation 36.58 is also invariant under this relabeling –
which is exactly what equation 36.59 claims.

(b) Define the Dirac fields

Ψi =

(
χi
ξ†i

)
, ΨC

i =

(
ξi
χ†i

)
Use equations 36.58 and 36.59 to prove the Dirac Form of the Fierz identities,

(Ψ1γ
µPLΨ2)(Ψ3γ

µPLΨ4) = −2(Ψ1PRΨC
3 )(Ψ

C

4 PLΨ2)
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(Ψ1γ
µPLΨ2)(Ψ3γ

µPLΨ4) = (Ψ1γ
µPLΨ4)(Ψ3γ

µPLΨ2)

All we actually have to do is prove that these forms of the Fierz Identities are equivalent to
those in part (a). Let’s start with equation 36.58:(

χ†1σ
µχ2

)(
χ†3σµχ4

)
= −2(χ†1χ

†
3)(χ2χ4)

On both sides, let’s write this as a bra times a ket.[
(ξ1, χ

†
1)

(
0

σµχ2

)][
(ξ3, χ

†
3)

(
0

σµχ4

)]
= −2

[(
ξ1, χ

†
1

)( 0

χ†3

)][(
χ4, ξ

†
4

)( χ2

0

)]
where in the last term we remember, as in part (a), that χ2χ4 = χ4χ2. We can use equation
36.60 to identify some of these terms:[

Ψ1

(
0

σµχ2

)][
Ψ3

(
0

σµχ4

)]
= −2

[
Ψ1

(
0

χ†3

)][
Ψ
C

4

(
χ2

0

)]
On the left-hand side, let’s separate the σs into their own matrix:[

Ψ1

(
0 σµ

σµ 0

)(
χ2

0

)][
Ψ3

(
0 σµ
σµ 0

)(
χ4

0

)]
= −2

[
Ψ1

(
0

χ†3

)][
Ψ
C

4

(
χ2

0

)]
These are gamma matrices:[

Ψ1γ
µ

(
χ2

0

)][
Ψ3γµ

(
χ4

0

)]
= −2

[
Ψ1

(
0

χ†3

)][
Ψ
C

4

(
χ2

0

)]
Now let’s rewrite the remaining kets as projections:[

Ψ1γ
µPL

(
χ2

ξ†2

)][
Ψ3γµPL

(
χ4

ξ†4

)]
= −2

[
Ψ1PR

(
ξ3
χ†3

)][
Ψ
C

4 PL

(
χ2

ξ†2

)]
Using 36.60 again: [

Ψ1γ
µPLΨ2

] [
Ψ3γµPLΨ4

]
= −2

[
Ψ1PRΨC

3

] [
Ψ
C

4 PLΨ2

]
(36.3.1)

which is 36.61.

To prove 36.62, let’s go back to equation 36.58 and write it as a bra times a ket as be-
fore, but this time we will write the last term differently:[

(ξ1, χ
†
1)

(
0

σµχ2

)][
(ξ3, χ

†
3)

(
0

σµχ4

)]
= −2

[(
ξ1, χ

†
1

)( 0

χ†3

)][(
χ2, ξ

†
2

)( χ4

0

)]
The left-hand side has not changed; the right hand side is the same up to an arbitrary
relabeling (2↔ 4). We can therefore read off the result from equation (36.3.1):[

Ψ1γ
µPLΨ2

] [
Ψ3γµPLΨ4

]
= −2

[
Ψ1PRΨC

3

] [
Ψ
C

2 PLΨ4

]
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This shows that the right-hand side of equation 36.61 is invariant under 2 ↔ 4. It follows
that the left-hand side must also be invariant under that transformation, ie that:[

Ψ1γ
µPLΨ2

] [
Ψ3γµPLΨ4

]
=
[
Ψ1γ

µPLΨ4

] [
Ψ3γµPLΨ2

]
which is equation 36.62.

Note: This may seem like a brilliant but completely unintuitive solution. If so, just start
with the result, apply the projection and gamma matrices, and arrive at 36.58-59. Then
reorder your results to get this solution (or announce that all your steps are reversible, so
you’re already done).

(c) By writing both sides out in terms of Weyl fields, show that

Ψ1γ
µPRΨ2 = −Ψ

C

2 γ
µPLΨC

1

Ψ1PLΨ2 = Ψ
C

2 PLΨC
1

Ψ1PRΨ2 = Ψ
C

2 PRΨC
1

Writing both sides as instructed, we have:(
ξ1, χ

†
1

)( 0 σµ
σµ 0

)(
0

ξ†2

)
?
= −(χ2ξ

†
2)

(
0 σµ

σµ 0

)(
ξ1
0

)
Doing the matrix multiplication:

ξ1σ
µξ†2

?
= −ξ†2σµξ1

To see if this can be true, let’s insert the indices. As usual, the daggers represent right-
handed fields, the non-daggered fields are left handed (that’s our convention). We give
dotted indices to right-handed fields, non-dotted indices to left-handed fields. Further, σ
takes raised indices, σ takes lowered indices. Then:

ξa1σ
µ
aȧξ
†ȧ
2

?
= −ξ†2ȧσµȧaξ1a

On the left-hand side, let’s use the Levi-Cevita symbol to raise our indices. Remember we
have to contract with the second index of the Levi-Cevita symbol, otherwise we get a minus
sign. Then,

εabεȧḃξ1bσ
µ
aȧξ
†
2ḃ

?
= −ξ†2ȧσµȧaξ1a

Now let’s use equaton 35.19 (which is a definition):

ξ1bσ
µḃbξ†

2ḃ

?
= −ξ†2ȧσµȧaξ1a

In order to be able to drop the indices on the left-hand side, we need to reverse the order of
the two terms. However, note that the function indicated by the index of a Weyl Field is a
fermionic function, and these always anticommute. Thus,

−ξ†
2ḃ
σµḃbξ1b

?
= −ξ†2ȧσµȧaξ1a
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Dropping the indices, we find:

−ξ†2σµξ1
X
= −ξ†2σµξ1

Expanding the second equation, we have:

(ξ1, χ
†
1)

(
χ2

0

)
?
=
(
χ2ξ

†
2

)( ξ1
0

)
This gives:

ξ1χ2
X
= χ2ξ1

The third equation is evaluated in the same manner as the second; the result is

χ†1ξ
†
2 = ξ†2χ

†
1

by is true (see equation 35.25).

Srednicki 36.4. Consider a field φA(x) in an unspecified representation of the
Lorentz Group, indexed by A, that obeys

U(Λ)−1φA(x)U(Λ) = L B
A (Λ)φB(Λ−1x)

For an infinitesimal transformation:

L B
A (1 + δω) = δ BA +

i

2
δωµν(S

µν) BA

(a) Following the procedure of section 22, show that the energy-momentum
tensor is

T µν = gµνL−
∂L

∂(∂µφA)
∂νφA

The derivation in chapter 22 still holds: everything is the same except that we’ve replaced
the scalar field φa with the representation-independent field φA. We therefore read off the
energy-momentum tensor from equation 22.29; the result is equation 36.68.

(b) Show that the Noether current correpsoning to a Lorentz transformation
is

Mµνρ = xνT µρ− xρT µν +Bµνρ

where

Bµνρ = −i
∂L

∂(∂µφA)
(Sνρ) BA φB

Equation 22.27 gives the Noether Current:

jµ(x) =
∂L(x)

∂(∂µφA(x))
δφA(x)−Kµ(x) (36.4.1)
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We need δφA, which we get from the symmetry. Our Lorentz Symmetry is, in differential
form:

φA → L B
A (1 + δω)φB(xµ − xνδµνω )

We use 36.67 for L B
A and make a Taylor Series of φB. Then:

φA →
[
δ BA +

i

2
δωµν(S

µν) BA

]
[φB(x)− ∂µφAxνδωµν ]

Doing the multiplication:

φA → φA − ∂µφxνδωµν +
i

2
δωµν(S

µν) BA φB

Hence:

δφ =

[
i

2
(Sµν) BA φB − ∂µφAxν

]
δωµν (36.4.2)

Now for Kµ. To determine this, we need to look at the change in the Lagrangian:

L(x)→ L(Λ−1x)

L(x)→ L(xµ − δωµνxν)
L(x)→ L(x)− ∂µLδωµνxν

Therefore:
δL = −∂µLδωµνxν

We can write this as:
δL = −∂µ(xνL)δωµν

Why? We can recover the original equation by doing the derivative with the product rule.
One derivative will give a metric, which we use to change the differential to δω µ

µ . This rep-
resents the trace of an antisymmetric matrix, which vanishes. The other term is the original
equation.

Next, we bring δω inside the derivative as well. We can treat this as a constant term because
it is a differential: taking the derivative of a differential will effectively give a second-order
differential, which we neglect. Then,

δL = −∂µ(xνLδωµν)

Next we swap the indices:
δL = −∂µ(xνLδωµν)

which gives, by the definition of Kµ:

Kµ = −δωµνxνL (36.4.3)

Finally, we combine (36.4.2) and (36.4.3) into (36.4.1), the result is (changing the indices as
needed):

jρ =
∂L(x)

∂(∂ρφA(x))

[
i

2
(Sµν) BA φB − ∂µφAxν

]
δωµν + Lδωρνxν
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We distribute the first term:

jρ =
∂L(x)

∂(∂ρφA(x))

i

2
(Sµν) BA φB − ∂µφAxνδωµν

∂L(x)

∂(∂ρφA(x))
+ Lδωρνxν

This first term is B:

jρ = −1

2
Bρµνδωµν − ∂µφAxνδωµν

∂L(x)

∂(∂ρφA(x))
+ Lδωρνxν

Using the result of part (a), we have:

jρ = −1

2
Bρµνδωµν + T ρµxνδωµν − gρµLxνδωµν + Lδωρνxν

After manipulating the indices, these last two terms cancel:

jρ = −1

2
Bρµνδωµν + T ρµxνδωµν

Rewriting this:

jρ = −1

2
[Bρµνδωµν − T ρµxνδωµν − T ρµxνδωµν ]

In this last term, µ and ν are just dummy indices. We’ll exchange them:

jρ = −1

2
[Bρµνδωµν − T ρµxνδωµν − T ρνxµδωνµ]

δω is antisymmetric, so we can switch those indices:

jρ = −1

2
[Bρµνδωµν − T ρµxνδωµν + T ρνxµδωµν ]

Now we factor out the differential:

jρ = −1

2
[Bρµν − T ρµxν + T ρνxµ] δωµν

We recognize the term in the brackets as M:

jρ = −1

2
[Mρµν ] δωµν

It is customary to drop the differential as well as the constant terms. Then,

jρµν =Mρµν

as expected.

(c) Use the conservation laws ∂µT
µν = 0 and ∂µMµνρ = 0 to show that

T νρ− T ρν + ∂µB
µνρ = 0
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We have:
∂µMµνρ = ∂µ (xνT µρ − xρT µν +Bµνρ) = 0

This gives:

∂µMµνρ = g ν
µ T

µρ + xν∂µT
µρ− g ρ

µ T
µν − xρ∂µT µν + ∂µB

µνρ = 0

The derivative of T is zero, so:

T νρ − T ρν + ∂µB
µνρ = 0

(d) Define the improved energy-momentum tensor or Belinfante tensor

Θµν = T µν +
1

2
∂ρ(B

ρµν −Bµρν −Bνρµ)

(i) Show that Θµν is symmetric.

We have:

Θµν = T µν +
1

2
∂ρ (Bρµν −Bµρν −Bνρµ)

We can simply reorder these last two terms:

Θµν = T µν +
1

2
∂ρ (Bρµν −Bνρµ −Bµρν)

From the definition of B, we see that the last two indices of B go onto Sµν , the generators of
the Lorentz Group for spinors. Since S is antisymmetric, it follows that B is antisymmetric
in its last two indices. Therefore, we can write:

Θµν = T µν +
1

2
∂ρ (−Bρνµ −Bνρµ −Bµρν)

We can even rewrite this as:

Θµν = T µν − ∂ρBρνµ +
1

2
∂ρ (Bρνµ −Bνρµ −Bµρν)

Again using the fact that B is antisymmetric in its last two indices, we write:

Θµν = T µν + ∂ρB
ρµν +

1

2
∂ρ (Bρνµ −Bνρµ −Bµρν)

Using the result from part (c), we have:

Θµν = T νµ +
1

2
∂ρ (Bρνµ −Bνρµ −Bµρν)

which gives:
Θµν = Θνµ
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(ii) Show that Θµν is conserved, ∂µΘµν = 0

We take the derivative:

∂µΘµν = ∂µT
µν +

1

2
∂µ∂ρ (Bρµν −Bµρν −Bνρµ)

This first term vanishes by Conservation of Energy. In the remaining terms, we will dis-
tribute:

∂µΘµν =
1

2
∂µ∂ρB

ρµν − 1

2
∂µ∂ρB

µρν − 1

2
∂µ∂ρB

νρµ

For the second term, we will use our usual trick of arbitrarily choosing to swap the dummy
indices ρ and ν. Also, we’ll divide the last term into two. These two changes give:

∂µΘµν =
1

2
∂µ∂ρB

ρµν − 1

2
∂ρ∂µB

ρµν − 1

4
∂µ∂ρB

νρµ − 1

4
∂µ∂ρB

νρµ

Recall that partial derivatives commute; thus, the first and second terms cancel. In the
fourth term, we’ll again use our trick of swapping the dummy indices. Then:

∂µΘµν = −1

4
∂µ∂ρB

νρµ − 1

4
∂ρ∂µB

νµρ

Now in the fourth term, we can again commute the partial derivatives. In addition, we have
already discussed how B is antisymmetric in its last two indices. Thus, the remaining two
terms cancel:

∂µΘµν = 0

(iii) Show that
∫∫∫
d3xΘ0ν =

∫∫∫
d3xT 0ν = P ν, where P ν is the energy-momentum

four-vector. In general relativity, it is the Belinfante tensor that couples to grav-
ity.

We have: ∫
Θ0νd3x =

∫
T 0νd3x+

1

2

∫
∂ρ(B

ρ0ν −B0ρν −Bνρ0)d3x

We break this last term into temporal and spatial counterparts:∫
Θ0νd3x =

∫
T 0νd3x+

1

2

∫
∂i(B

i0ν −B0iν −Bνi0)d3x+
1

2

∫
∂0(B

00ν −B00ν −Bν00)d3x

The second integral on the right hand side vanishes, as it is an integral over a total divergence
(assuming reasonable boundary conditions at spatial infinity). In the last integral, the first
two terms cancel, and the third term vanishes because B is antisymmetric in its last two
indices, as discussed above. We’re left with:∫

Θ0νd3x =

∫
T 0νd3x = P ν

where the last equality follows by equation 22.35.

(e) We define the improved tensor by:

Ξµνρ = xνΘµρ− xρΘµν
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(i) Show that it obeys ∂µΞµνρ = 0.

We evaluate the derivative:

∂µΞµνρ = ∂µ (xνΘµρ − xρΘµν)

Using the product rule:

∂µΞµνρ = (∂µx
ν)Θµρ + xν∂µΘµρ − (∂µx

ρ)Θµν − xρ∂µΘµν

Since the Belinfante tensor is conserved (our result from part (d)), the second and fourth
terms vanish. In the remaining terms, we evaluate the derivative:

∂µΞµνρ = g ν
µ Θµρ − g ρ

µ Θµν

Using the metric:
∂µΞµνρ = Θνρ −Θρν

Since the Belinfante Tensor is symmetric (another result from part (d)), we have:

∂µΞµνρ = 0

(ii) Show that
∫∫∫
d3xΞ0νρ =

∫∫∫
d3xM0νρ = Mνρ, where Mνρ are the Lorentz gen-

erators.

We have: ∫
Ξ0νρ =

∫ [
xνΘ0ρ − xρΘ0ν

]
Using the definition of Θ, we have:∫

Ξ0νρd3x =

∫ [
xν
(
T 0ρ +

1

2
∂µ
[
Bµ0ρ −B0µρ −Bρµ0

])
− xρ

(
T 0ν +

1

2
∂µ
[
Bµ0ν −B0µν −Bνµ0

])]
d3x

Distributing:∫
Ξ0νρd3x =

∫ (
xνT 0ρ +

1

2
xν∂µ

(
Bµ0ρ −B0µρ −Bρµ0

)
− xρT 0ν − 1

2
xρ∂µ

(
Bµ0ν −B0µν −Bνµ0

)]
d3x

We break the sums over µ into temporal and spatial components:∫
Ξ0νρd3x =

∫ (
xνT 0ρ +

1

2
xν∂0

(
B00ρ −B00ρ −Bρ00

)
+

1

2
xν∂i

(
Bi0ρ −B0iρ −Bρi0

)
− xρT 0ν

−1

2
xρ∂0

(
B00ν −B00ν −Bν00

)
− 1

2
xρ∂i

(
Bi0ν −B0iν −Bνi0

)]
d3x

The temporal terms vanish as before. Then:∫
Ξ0νρd3x =

∫ (
xνT 0ρ +

1

2
xν∂i

(
Bi0ρ −B0iρ −Bρi0

)
− xρT 0ν − 1

2
xρ∂i

(
Bi0ν −B0iν −Bνi0

)]
d3x
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Integrating by parts, we have:∫
Ξ0νρd3x =

∫ (
xνT 0ρ − 1

2
(∂ix

ν)
(
Bi0ρ −B0iρ −Bρi0

)
− xρT 0ν +

1

2
(∂ix

ρ)
(
Bi0ν −B0iν −Bνi0

)]
d3x

Doing the derivatives:∫
Ξ0νρd3x =

∫ (
xνT 0ρ − 1

2
g ν
i

(
Bi0ρ −B0iρ −Bρi0

)
− xρT 0ν +

1

2
g ρ
i

(
Bi0ν −B0iν −Bνi0

)]
d3x

Using the metric:∫
Ξ0νρd3x =

∫ (
xνT 0ρ − 1

2

(
Bν0ρ −B0νρ −Bρν0

)
− xρT 0ν +

1

2

(
Bρ0ν −B0ρν −Bνρ0

)]
d3x

The first and last terms cancel, as do the third and fourth. Then:∫
Ξ0νρd3x =

∫ [
xνT 0ρ − xρT 0ν +B0νρ

]
d3x

which is: ∫
Ξ0νρd3x =

∫
M0νρd3x = Mνρ

where the last equality follows by equation 22.40.

(f) Compute Θµν for a left-handed Weyl field with L given by equation 36.2,
and for a Dirac field with L given by equation 36.28.

The Lagrangian given by equation 36.2 is:

L = iψ†ρρ∂ρψ −
1

2
mψψ − 1

2
mψ†ψ†

where the m has been made real and positive as per the discussion in the text. We’ve also
changed the dummy index to ρ to avoid ambiguity later on. Then we can take the derivative:

∂L
∂(∂µψ)

= iψ†σµ

Equation 36.68 gives, therefore:

T µν = gµν
[
iψ†σρ∂ρψ −

1

2
mψψ − 1

2
mψ†ψ†

]
− iψ†σµ∂νψ

Now we note that, since this is a left-handed Weyl Field, we take the generator of the Lorentz
Group by equation 36.51:

(SµνL ) BA =
i

4
[σµσν − σνσµ] BA

Equation 36.70 gives, therefore:

Bµνρ =
i

4
ψ†σµ [σνσρ − σρσν ] BA ψB
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Combining all these results in equation 36.72, we have:

Θµν = gµν
[
iψ†σρ∂ρψ −

1

2
mψψ − 1

2
mψ†ψ†

]
− iψ†σµ∂νψ +

1

2
∂ρ

[
i

4
ψ†Aσρ [σµσν − σρσν ] BA ψB

− i
4
ψ†Aσµ [σρσν − σρσν ] BA ψB −

i

4
ψ†Aσν [σρσµ − σρσν ] BA ψB

]
There’s not much we can do to simplify this. We could commute the derivative through the
σ, but that would require us to use the product rule, making this more complicated rather
than less so; further, nothing would cancel. All we can really do is to pull out some common
factors:

Θµν = igµνψ†σρ∂ρψ −
m

2
gµνψψ − m

2
gµνψ†ψ† − iψ†σµ∂νψ +

i

8
∂ρ

[
ψ†Aσρ (σµσν − σνσµ) BA ψB

−ψ†Aσµ (σρσν − σνσρ) BA ψB − ψ†Aσν (σρσµ − σµσρ) BA ψB

]

As for the Dirac Field, we again have:

Θµν = T µν − 1

2
∂ρ (Bρµν −Bµρν −Bνρµ) (36.4.4)

The energy-momentum tensor is:

T µν = gµνL − ∂L
∂(∂µΨ)

∂νΨ

The Lagrangian is given by equation 36.28:

L = iΨγµ∂µΨ−mΨΨ

and so we can compute
∂L

∂(∂µΨ)
= iΨγµ

Thus the energy-momentum tensor is given by:

T µν = igµνΨγµ∂µΨ−mgµνΨΨ− iΨγµ∂νΨ

Finally, we need Bµνρ, which is given by:

Bµνρ = Ψ
A
γµ(Sµν) BA ΨB

where Sµν is given by:

Sµν =

(
+(SµνL ) ca 0

0 −(SµνR )ȧċ

)

12



Combining our boxed results into equation (36.4.4) gives us the explicit form for the Be-
linfante tensor. While it is normally worth writing these results explicitly, doing so in this
case promises to yield a horrible equation which will yield very little insight. As such, it is
perhaps better to leave our result in this form.

Srednicki 36.5. Symmetries of fermion fields. Consider a theory with N massless
Weyl fields ψj

L = iψ†jσ
µ∂µψj

where the repeated index j is summed. This Lagrangian is clearly invariant
under the U(N) transformation,

ψj → Ujkψk

where U is a unitary matrix. State the invariance group for the following cases:

(a) N Weyl fields with a common mass M.

L = iψ†σµ∂µψ−
m

2
ψψ−

m

2
ψ†ψ†

Let’s see if it’s still true for U(N):

L → i(Uijψj)
†σµ∂µ(Uikψk)−

m

2
(Uijψj)(Uikψk)−

m

2
(Uijψj)

†(Uikψk)
†

This becomes:
L → iψ†U †σµ∂µUψ −

m

2
ψjU

T
jiUikψk −

m

2
ψ†jU

∗
jiU
†
ikψ
†
k

Now we need to kill the Us. In the first term, as Srednicki says, the terms vanish if U †U = 1.
By the way, don’t be concerned about commutation with the Pauli matrix: the Pauli matrix
is multiplied by the derivative; the result is a ket of derivatives, which is an operator. This
will commute with the constant unitary matrix. We’ll soon develop a new notation to make
this point cleaner.

In the second and third terms, we need UTU = I in order to kill the Us; this implies
that UT = U−1, which by our first condition implies that UT = U †. This implies that
U = U∗, which means that U must be real.

A real unitary matrix is called an orthogonal matrix, and so the group is invariant un-
der O(N).

(b) N massless Majorana fields

L =
i

2
ΨT
j Cγµ∂µΨj

We can break the Majorana field into components of its Weyl fields. A Majorana field con-
sists of only one Weyl field (the left-handed one on top, and the conjugate of the right-handed
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one on the bottom). Expanding the expression in the Lagrangian, we then get only N unique
terms, the same as when we dealt directly with Weyl fields (though there is now a factor of
two, since the Weyl field appears twice per Majorana Field. The Lagrangian is then substan-
tially unchanged from that of the first term of part (a), and so is the symmetry group. U(N).

(c) N Majorana fields with a common mass m

L =
i

2
ΨT
j Cγµ∂µΨj −

1

2
mΨT

j CΨj

Same as part (b), except now the entire Lagrangian of part (a) is applicable, not merely the
first term. The result is the same. O(N).

(d) N massless Dirac fields
L = iΨjγ

µ∂µΨj

Same as part (b), except now there are two 2N mass terms in the Lagrangian rather than N,
since each Dirac field consists of two Weyl spinors. All of these terms can “mix” together.
Hence, the group is enlarged to U(2N).

(e) N Dirac fields with a common mass m

L = iΨjγ
µ∂µΨj −mΨjΨj

Same as part (c), except now there are twice as many terms, since each Dirac field consists
of two Weyl spinors. O(2N).
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