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Srednicki 35.1. Verify that equation 35.20 follows from 35.2 and 35.19.

This is simply a matter of combining 35.2 and 35.19, then manipulating the indices. We’ll
start with µ = 0.

σ̄0ȧa = εabεȧḃδbḃ
= εabεȧb

=

{
1 if a = ȧ
0 otherwise

= δaȧ
= I

where the third equality follows because when b is summed, the component with b = a = ȧ
vanishes, and the component where b 6= a = ȧ remains, giving 12 = 1 or (−1)2 = 1.

Next for µ = i (that is to say, µ 6= 0):

σ̄iȧa = εabεȧḃσi
bḃ

= εabσi
bḃ
εȧḃ

= −εabσi
bḃ
εḃȧ

= σab2 σ
i
bḃ
σḃȧ2

= (σ2σ
iσ2)

aȧ

=
[
(σ2σiσ2)

T
]ȧa

=


(−σT1 )ȧa if i = 1
(σT2 )ȧa if i = 2

(−σT3 )ȧa if i = 3
= −σȧai
= −σiȧa

In the sixth and ninth equalities, note that σi = σi, since i 6= 0.

Combining these two results gives equation 35.20.
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Srednicki 35.2. Verify that equation 35.21 is consistent with equations 34.9
and 34.10.

Equation 35.21 is:

(SL)µνL =
i

4
(σµσ̄ν − σν σ̄µ)

Now we simply take µ = i and ν = j to symbolize that we’re considering spatial indices
only. The notation here is really confusing because the object σµȧa looks exactly like the
Pauli Matrices, σ. Here, we mean the invariant object:

(SL)ijL =
i

4

(
σiσ̄j − σjσ̄i

)
And now we’ll switch to the Pauli Matrices (using 35.2 and 35.20):

(SL)ijL = − i
4

(
σiσj − σjσi

)
which is:

(SL)ijL = − i
4

[σi, σj]

This gives:

(SL)ijL =
1

2
εijkσk

which is consistent with equation 34.9.

In the same way, we now go back to 35.21, this time allowing µ = k and ν = 0. We
have:

(SL)k0 =
i

4

(
σkσ̄0 − σ0σ̄k

)
Switching to Pauli Matrices:

(SL)k0 =
i

4

(
σk + σk

)
This gives:

(SL)k0 =
i

2
σk

which is consistent with equation 34.10.

Note 1: If you’re wondering where the indices went, we chose to drop them. This is equiva-
lent to working with matrices in the abstract, rather than individual components.

Note 2: In future, we will consider σµȧa to be a “four-dimensional Pauli Matrix,” which
elucidates the confusing notation commented upon above.

Srednicki 35.3. Verify that equation 35.22 is consistent with equation 34.17.

Equation 35.22 is:

(SµνR )ȧ
ḃ

= − i
4

(σ̄µσν − σ̄νσµ)ȧḃ
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We drop the indices.

(SµνR ) = − i
4

(σ̄µσν − σ̄νσµ)

which gives:

(SµνR ) = −
[
− i

4
(σ̄µσν − σ̄νσµ)†

]†
and:

(SµνR ) = −
[
− i

4

(
σ†ν σ̄†µ − σ†µσ̄†ν)]†

The Pauli matrices are Hermitian, so:

(SµνR ) = −
[
− i

4
(σν σ̄µ − σµσ̄ν)

]†
which is

(SµνR ) = −
[
i

4
(σµσ̄ν − σν σ̄µ)

]†
Using equation 35.21:

(SµνR ) = − (SµνL )†

Now we can reinsert the indices: at that point, the dagger will be acting on one complex
number (albeit one complex number whose value shifts depending on the indices). It is not
practical to take the transpose of one complex number, so we reduce the Hermitian conjugate
to a complex conjugate. The result is equation 34.17.

Srednicki 35.4. Verify equation 35.5.

Applying equation 35.19:

εabεȧḃσµaȧσ
ν
bḃ

= σµaȧσ̄
νȧa

Notice what this is: the two matrices are multiplied (inside indices) and the resultant matrix
has its trace taken (outside indices). Dropping the index notation, we have:

εabεȧḃσµaȧσ
ν
bḃ

= Tr(σµσ̄ν)

Now we can test various cases. If both indices are 0, we take the trace of the (2x2) identity,
which is 2. If both are the same nonzero index, then we get a negative sign (from the σ̄)
and the trace of a Pauli matrix squared, which is negative the trace of the identity, which is
-2. If one index is 0 and the other is nonzero, then we have the trace of the identity times a
Pauli matrix (possibly with a minus sign), and a Pauli matrix has trace zero. If the indices
are nonzero and nonequal, we have the trace of the product of two Pauli matrices (possibly
with a minus sign), which is the trace of the third Pauli matrix (possibly with a minus sign),
and the Pauli matrix has trace 0. Combining these results, we have:

εabεȧḃσµaȧσ
ν
bḃ

= diag(2,−2,−2,−2)

which is
εabεȧḃσµaȧσ

ν
bḃ

= −2gµν

as expected.
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