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Srednicki 34.1. Verify that equation 34.6 follows from equation 34.1.

We take Λ = 1 + δω:

U(1 + δω)−1ψU(1 + δω) = L(1 + δω)ψ([1 + δω]−1x)

Next we use equation 34.3, and U(1 + δω) = I + i
2
δωM :

(I − i

2
δωM)ψ(I +

i

2
δωM) = (I +

i

2
δωSL)ψ(x− xδω)

We do the multiplication on the left side, dropping the term with two differentials. On the
right, we distribute:

ψ +
i

2
ψδωM − i

2
δωMψ = Iψ(x− xδω) +

i

2
δωSLψ(x− xδω)

On the left, we rewrite using index notation. On the right, we expand in a Taylor Series:
ψ(x− xδω) = ψ(x)− xδω∂µψ(xδω):

ψ +
i

2
δωµν [ψ,M

µν ] = ψ(x)− xδω∂µψ(x) +
i

2
δωµν(S

µν
L ) ba ψb(x− xδω)

The ψ terms cancel. Further, the last term already has a differential, so we keep only the
leading term in the expansion of ψ(x− xδω):

i

2
δωµν [ψ,M

µν ] = −xδω∂µψ(x) +
i

2
δωµν(S

µν
L ) ba ψb(x)

Here comes the subtelty. Each of these terms is multiplied by δωµν . This is an arbitrary
antisymmetric tensor. Any symmetric coeffcients are irrelevent, since those terms must be
equal to zero. Anti-symmetric coefficients result in nonzero terms, and so can be equated.
In this equation, M and S are already antisymmetric. All that remains is to antisymmetrize
the first term on the right side. We do this by writing the term twice:

i

2
δωµν [ψ,M

µν ] = −1

2
xνδωµν∂

µψ(x)− 1

2
xνδωµν∂

µψ(x) +
i

2
δωµν(S

µν
L ) ba ψb(x)
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Now switch the dummy indices in the second term:

i

2
δωµν [ψ,M

µν ] = −1

2
xνδωµν∂

µψ(x)− 1

2
xµδωνµ∂

νψ(x) +
i

2
δωµν(S

µν
L ) ba ψb(x)

Now we switch them back in the δω. This costs a minus sign, due to anti-symmetry:

i

2
δωµν [ψ,M

µν ] = −1

2
xνδωµν∂

µψ(x) +
1

2
xµδωµν∂

νψ(x) +
i

2
δωµν(S

µν
L ) ba ψb(x)

This is:

i

2
δωµν [ψ,M

µν ] =

[
−1

2
xν∂µψ(x) +

1

2
xµ∂νψ(x)

]
δωµν +

i

2
δωµν(S

µν
L ) ba ψb(x)

Now all the coefficients of δω are antisymmetric, so we can equate them:

i

2
[ψ,Mµν ] = −1

2
xν∂µψ(x) +

1

2
xµ∂νψ(x) +

i

2
(SµνL ) ba ψb(x)

Finally, we multiply by 2
i
:

[ψ,Mµν ] = −1

i
(xν∂µ − xµ∂ν)ψ(x) + (SµνL ) ba ψb(x)

Using the definition of Lµν , and inserting the remaining Latin indices for consistency:

[ψa,M
µν ] = Lµνψa(x) + (SµνL ) ba ψb(x)

which is equation 34.6.

Srednicki 34.2. Verify that equations 34.9 and 34.10 obey equation 34.4.

Using equation 34.9:

[SijL , S
mn
L ] =

1

4
εijkεmno[σk, σo]

Let k be either m or n (we can neglect the case where k is o, since the commutator will
vanish). Then:

[SijL , S
mn
L ] =

1

4

(
εijmεmno[σm, σo] + εijnεmno[σn, σo]

)
Similarly, we let o be either i or j:

[SijL , S
mn
L ] =

1

4

(
εijmεmni[σm, σi] + εijnεmni[σn, σi] + εijmεmnj[σm, σj] + εijnεmnj[σn, σj]

)
Playing with the indices:

[SijL , S
mn
L ] =

1

4

(
−εijmεinm[σm, σi] + εijnεimn[σn, σi] + εijmεnjm[σm, σj]− εijnεmjn[σn, σj]

)
Now this gets a little bit subtle. Note that we cannot use the summed properties of the
Levi-Cevita symbol (such as εabcεdbc = 2δad), because these indices are not being summed
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over. The indices of the Levi-Cevita symbol are set once and for all by the choices on the
left hand side. Instead, consider the first term. There are only three spatial dimensions, so i,
j, and m must be 1, 2, or 3. Duplicates are not allowed by the definition of the Levi-Cevita
symbol. It follows then that j must equal n. Since the two symbols are identical, they
can only yield a positive one (or zero). Notice, therefore, that all the information of the
Levi-Cevita symbols is contained in this statement: the term is nonzero only if (1) j = n,
(2) i 6= j, and (3) i 6= m. We can repeat this analysis for all terms: the indices in conditions
(1) and (3) will change, condition (2) will remain the same.

Note that (3) is redundant: this information is already encoded in the commutator. As
for (1), we can more easily state that in a δ. Let’s try to do so:

[SijL , S
mn
L ] =

1

4

(
−δjn[σm, σi] + δjm[σn, σi] + δin[σm, σj]− δim[σn, σj]

)
How do we impose the remaining condition, that i 6= j? It’s already taken care of: if i = j,
the first and third terms cancel, as do the third and fourth. Hence, we get a nonzero result
if and only if i 6= j, just as required.

Next, recall that [σa, σb] = 2iεabcσc = 4iSabL . So:

[SijL , S
mn
L ] = i

(
−δjnSmiL + δjmSniL + δinSmjL − δ

imSnjL
)

Finally, recall that for spatial (Latin) indices, g = δ. Also, the SL matrices are antisymmetric.
Thus:

[SijL , S
mn
L ] = i

(
gimSnjL − g

jmSinL − ginS
jm
L + gjnSimL

)
which is equation 34.4 (for spatial indices).

Next we use equation 34.10:

[Sk0, S`0] = −1

4
[σk, σ`]

[Sk0, S`0] = − i
2
εk`mσm

[Sk0, S`0] = −iSk`L
The answer from 34.4 is:

[Sk0, S`0] = i
(
gk`S00

L − g0`Sk0L − gk0S0`
L + g00Sk`L

)
The first term vanishes since SL is antisymmetric. The middle terms vanish because g is
diagonal (recall that Latin indices represent spatial indices). g00 = −1. Hence,

[Sk0, S`0] = −iSk`L

So those match up.
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Finally, we must consider the case:

[Sij, Sk0] = i
4
εij`[σ`, σk]

= −1
2
εij`ε`kmσm

= −1
2
εij`ε`kiσi − 1

2
εij`ε`kjσj

= 1
2
εij`εik`σi − 1

2
εij`εkj`σj

As before, we replace the two ε functions with logical requirements, and find that these can
be better implemented with delta functions. Specifically:

[Sij, Sk0] = 1
2

(
δjkσi − δikσj

)
= i

(
gikSj0L − gjkSi0L

)
Is this what we would expect? Recall that i, j, k represent spatial indices only; g is diagonal,
so any terms involving gi0, gj0, or gk0 must vanish. Equation 34.4 therefore gives exactly
this.

Srednicki 34.3. Show that the Levi-Cevita symbol obeys:

εµνρσεαβγσ = −δµαδνβδργ − δµβδ
ν
γδ
ρ
α − δµγδ

ν
αδ

ρ
β + δµβδ

ν
αδ

ρ
γ + δµαδ

ν
γδ
ρ
β + δµγδ

ν
βδ

ρ
α

εµνρσεαβρσ = −2(δµαδ
ν
β − δµβδ

ν
α)

εµνρσεανρσ = −6δµα

For the first: if µνρ is an even permutation of αβγ, then we will get -1 (superscripts are
inverse of subscripts). An odd permutation will give +1. This is exactly what the first line
shows.

For the second: the same logic holds, except this time ρ and σ can be exchanged, giv-
ing a factor of 2.

For the third: the same logic holds, except this time ν, ρ, and σ can be exchanged, giv-
ing a factor of 6.

Srednicki 34.4. Consider a field Ca...c ȧ...ċ(x), with N undotted indices and M
dotted indices, that is furthermore symmetric on exchange of any pair of undot-
ted indices, and also symmetric on exchange of any pair of dotted indices. Show
that this field corresponds to a single irreducible representation (2n+1, 2n’+1)
of the Lorentz Group, and identify n and n’.

Let’s start by recognizing what this is. We’re being asked to deal with the following:

(2, 1)⊗ (2, 1)⊗ . . .⊗ (1, 2)⊗ (1, 2)⊗ . . .

This is, of course, equal to:
(2⊗ 2⊗ . . . , 2⊗ 2⊗ . . .)
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where there are N terms in the first part and M in the second. Next we need to determine the
number of irreducible representations of this, and the dimensionality thereof. To determine
the irreducible represntations, we use Young Tableaux (for a more complete introduction,
see Sakurai section 6.5). In a young tableaux, each box represents one index, which in SU(2)
can be 0 or 1. Boxes are then combined: a horizontal string of boxes represents a symmet-
ric state; a vertical string of boxes represents an anti-symmetric state; boxes in any other
arrangement represent a mixed symmetry.

To determine 2⊗ 2, then, we have:

⊗ = ⊕

The first of these is symmetric and the second is antisymmetric. What about the dimen-
sionality? The rule is that rows must be nondecreasing; the columns must increase. So the
symmetric diagram is a triplet, it can be 0 0 , 0 1 , or 1 1 . The antisymmetric diagram

can only be 0
1

. Thus, 2⊗ 2 = 3S ⊕ 1A.

Similarly, let’s determine 2⊗ 2⊗ 2. This is:

2⊗ 2⊗ 2 =

(
⊕

)
⊗

2⊗ 2⊗ 2 =
(

⊗
)
⊕
(

⊗
)

2⊗ 2⊗ 2 =

(
⊕

)
⊕

( )

Notice that is not a legal diagram is SU(2), per the rules above. What about the dimen-

sionality? The first can be 0 0 0 , 0 0 1 , 0 1 1 , or 1 1 1 . The others can be 0 0
1

or 0 1
1

. Thus, 2⊗ 2⊗ 2 = 4S + 2M + 2M .

In the case at hand, we are absolutely required to consider only the symmetric case. The
symmetric case will have N boxes in a horizontal row. As in the examples above, this hori-
zontal row will have dimensionality N+1, since there are exactly N+1 ways to build the box
(with no 1s, with one 1, . . ., with all 1s).

Hence, the dimensionality is (N + 1,M + 1). It is obvious that N = 2n and M = 2n′.

It remains to show that this representation is irreducible. But that’s the whole point of
Young Tableaux: when all the ⊗ symbols are replaced by ⊕, the remaining Tableaux are a
priori irreducible.
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