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Srednicki 29.1. Consider a theroy with a single dimensionless coupling g whose
beta function takes the form β(g) = b1g

2 +b2g
3 + . . .. Now consider a new defini-

ton of the coupling g̃ that agrees with the original definition at lowest order, so
that we have g̃ = g+ c2g

2 + . . ..

(a) Show that β(g̃) = b1g̃
2 + b2g̃

3.

We have:
g = g̃ − c2g

2 − . . .

Using this in our beta function, we have:

β(g̃) = b1(g̃ − c2g
2 − . . .)2 + b2(g̃ − c2g

2 − . . .)3 + . . .

Hence:
β(g̃) = b1g̃

2 − 2b1c2g
2g̃ + b1c2g

4 + . . .+ b2g̃
3 − 2b2c2g̃

2g2 + . . .

We see that the minimum order in g is the minimum order in g̃. So we neglect all terms
where O(g) +O(g̃) > 3. Then:

β(g̃) = b1g̃
2 − 2b1c2g

2g̃ + b2g̃
3 + . . .

The second term has two coefficients, each of which should be negligable (this is the idea of
a perturbation sequence: the first terms are the most important). Thus,

β(g̃) = b1g̃
2 + b2g̃

3 + . . .

as expected.

(b) Generalize this result to the case of multiple dimensionless couplings.

As before, we have:
g = g̃ − c2g

2 − d2gh− e3h
2 − . . .

where g and h are the dimensionless constants (additional dimensionless constants can be
added, with all possible permutations up to order two in the constants). The beta function
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(shown for two constants, but easy to extend to n constants) is:

β(g̃) =
∞∑
n=1

∞∑
m=1

Cmn
[
g̃ − (c2g

2 + d2gh+ e3h
2 + . . .)

]m [
h̃− (c2g

2 + d2gh+ e3h
2 + . . .)

]n
Dropping all terms that have more than one coefficient:

β(g̃) =
∞∑
n=1

∞∑
m=1

Cmng̃
mh̃n + . . .

as expected.

Srednicki 29.2. Consider φ3 theory in six euclidean spacetime dimensions, with
Lagrangian:

L =
1

2
Z(Λ0)∂µφ∂µφ+

1

24
Z3/2(Λ0)g(Λ0)φ3

We assume that we have fine-tuned to keep m2(Λ)� Λ2, and so we neglect the
mass term.

(a) Show that

Z(Λ) = Z(Λ0)

(
1−

1

2
g2(Λ0)

d

dk

[∫∫∫ Λ0

Λ

d6`

(2π)6

1

(k + `)2`2

]
k2=0

+ . . .

)

g(Λ) =
Z3/2(Λ0)

Z3/2(Λ)
g(Λ0)

(
1 + g2(Λ0)

∫∫∫ Λ0

Λ

d6`

(2π)6

1

(`2)3
+ . . .

)
Hint: note that the tree-level propagator is ∆̃(k) = [Z(Λ0)k2]−1

This is a very difficult (and poorly-explained) problem. Let’s clarify exactly what we’re
supposed to do. The Lagrangian presented is given in terms of parameters that are well-
defined for an ultraviolet cutoff of Λ0. Now we want to lower the ultraviolet cutoff to Λ, and
quantify the effect on Z and g.

First, we use the hint to observe that:

Z(Λ0) =
d

dk2
[∆̃(k,Λ0)]−1

∣∣∣∣
k2=0

(29.2.1)

(of course, there is no need in this form to set k = 0, but it doesn’t hurt to do so, and it will
make life simpler later on).

This still holds at the revised energy scale, so:

Z(Λ) =
d

dk2
[∆̃(k,Λ)]−1

∣∣∣∣
k2=0

(29.2.2)
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Switching gears for a moment, we notice that the propagator at the new scale (∆̃(Λ)) equals
the propagator at the old scale (∆̃(Λ0)) plus corrections to the old scale (the corrections
being loop diagrams, with momenta between Λ and Λ0). Thus, the idea behind equation
14.16 holds. Manipulating equation 14.16, we have:

∆̃(Λ, k)−1 = ∆̃(Λ0, k)−1 − Π(Λ,Λ0, k)

Now we take the derivative of this with respect to k2, and set k2 = 0 after that. Using
(29.2.1) and (29.2.2), this becomes:

Z(Λ) = Z(Λ0)− d

dk2
Π(k2,Λ0,Λ) (29.2.3)

Now we need to know Π in order to make further progress. The diagrams are just the tree
level diagram, and the one-loop diagram from figure 14.1. The tree-level diagram has a value
of 1. The loop diagram gets:

• 1
2
, a symmetry factor

• (−Z(Λ0)g(Λ0))2, the vertex factors. Notice that we get a negative sign rather than a
factor of i since we are in Euclidean coordinates.

•
∫ Λ0

Λ
d6`

(2π)6
1

k2(k+`)2
, the propagators from the internal scalars (no mass terms since we

neglected those in the Lagrangian).

Due to the Euclidean space, these construct Π, not iΠ.

Putting these together, and using equation (29.2.3), we have:

Z(Λ) = Z(Λ0)

[
1− 1

2
g(Λ0)2 d

dk2

∫ Λ0

Λ

d6`

(2π)6

1

k2(k + `)2

∣∣∣∣
k2=0

]
Now for the g(Λ) expression. We need the exact form for the vertex. From the Lagrangian,
it is clear that this will be −Z(Λ)3/2g(Λ). Now we just need to draw the diagrams that equal
this vertex. We have the tree-level diagram and the one-loop diagram drawn in figure 16.1.
Assessing the values of these diagrams in the usual way (there are no factors of i due to the
Euclidean space, and no masses since we neglected those terms), we have:

−Z3/2(Λ)g(Λ) = −Z3/2(Λ0)g(Λ0)− Z9/2(Λ0)g3(Λ0)

∫ Λ0

Λ

d6`

(2π)6

1

`6Z(Λ0)3

Solving this, we have:

g(Λ) =
Z3/2(Λ0)

Z3/2(Λ)
g(Λ0)

[
1 + g2(Λ0)

∫ Λ0

Λ

d6`

(2π)6

1

`6

]
(29.2.4)

(b) Use your results to compute the beta function

β(g(Λ)) =
d

d ln Λ
g(Λ)
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and compare with the beta function in section 27.

We need to start by cleaning up Z(Λ). We have:

Z(Λ) = Z(Λ0)

[
1− 1

2
g(Λ0)2 d

dk2

∫ Λ

Λ0

d6`

(2π)6

1

k2(k + `)2

∣∣∣∣
k2=0

]
Now let’s focus for the moment on this part:

d

dk2

∫ Λ0

Λ

d6`

(2π)6

1

k2(k + `)2

∣∣∣∣
k2=0

Notice that this is equation 14.12, with m = 0. Using the result, we have:

d

dk2

∫ Λ0

Λ

d6`

(2π)6

∫ 1

0

dx
[
q2 + x(1− x)k2

]−2

k2=0

where q = ` + kx. Now we take as an approximation that q ≈ `; this is certainly almost
true, since ` ≈ Λ, the very high ultraviolet cutoff. Then, we take the derivative:

−2

∫ Λ0

Λ

d6`

(2π)6

∫ 1

0

dx
x(1− x)

[q2 + x(1− x)k2]3

∣∣∣∣
k2=0

Now we set k2 = 0, and we have:

−2

∫ Λ0

Λ

d6`

(2π)6

∫ 1

0

dx
x(1− x)

`6

Now we need to do that ` integral. We divide this into angular and radial parts; the angular
parts can be done with equation 14.23, in d=6. The radial part can be done directly, as can
the x-integral. The result is:

Z(Λ) = Z(Λ0)

[
1 +

g(Λ0)2

384π3
log

(
Λ0

Λ

)]
(29.2.5)

Now we need a clean expression for g(Λ). In equation (29.2.4), we can drop the second term
and take, at first order, Z(Λ) = Z(Λ0) from equation (29.2.5) to obtain:

g(Λ) = g(Λ0) + . . .

This will yield a trivial beta function, however. To the next highest order, we can do two
things: we can keep the second term in equation (29.2.4), or we can expand Z to second-order
in equation (29.2.5). Doing both will yield something of even higher order, which we are not
interested in. Let’s start with expanding Z. We then have:

Z3/2(Λ0)g(Λ0)

Z3/2(Λ)
=

Z3/2(Λ0)g(Λ0)

Z3/2(Λ0)
[
1 + g(Λ0)2

384π3 log(Λ0/Λ)
]3/2
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which is:

−3

2

g(Λ0)3

384π3
log(Λ0/Λ)

Good. Now we can add the second-order term from (29.2.4). We do the integral as before,
with the help of equation 14.23, and we get a contribution of:

g(Λ0)3

64π3
log(Λ0/Λ)

adding these terms up, we have:

g(Λ) = g(Λ0) +
3

4

g(Λ0)3

64π3
log

(
Λ0

Λ

)
and finally we can calculate the derivate:

β =
dg(Λ)

d log Λ
= −3

4

g(Λ0)3

64π3

How does this compare with the result from chapter 27? We had there:

dα

d log µ
= −3

2
α2

=⇒ dα

dg

dg

d log µ
= −3

2

g4

(64π3)2

=⇒ dg

d log µ
= −3

4

g(Λ0)3

64π3

which is the same as our solution.

Note: This is by far the most confusing problem so far, and it is a pity that no discus-
sion is included. Srednicki’s solution of this problem leaves a lot to be desired; in particular,
the comparison with the book is downright wrong. The approximation the q ≈ ` also seems
problematic to me, but this must be acceptable since the beta function works out. The key
point that really should be noted is that this problem is an excellent illustration of what beta
functions are – beta functions show how coupling constants vary with energy. In this prob-
lem, we changed the energy, so the degree of change had better reflect the beta function. The
agreement with chapter 27 is therefore not coincidental, but absolutely crucial.
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