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Srednicki 28.1. Consider φ4 theory,

L = −
1

2
Zφ∂

µφ∂µφ−
1

2
Zmm2φ2 −

1

24
Zλλµ̃

εφ4

in d = 4 − ε dimensions. Compute the beta function to O(λ2), the anomalous
dimension of m to O(λ), and the anomalous dimension of φ to O(λ).

Let’s compute the beta function “from scratch.” After that, we’ll use the equations that
Srednicki derived. We begin with the renormalized Lagrangian:

L = −
1

2
Zφ∂

µφ∂µφ−
1

2
Zmm

2φ2
−

1

24
Zλλµ̃

εφ4

and the Lagrangian for bare fields:

L = −
1

2
∂µφ0∂µφ0 −

1

2
m2

0
φ2

0
−

1

24
λ0µ̃

εφ4

0

The unique way to relate the bare fields to the renormalized fields is via:

φ0 = Z
1/2
φ φ

m0 = Z
−1/2
φ Z1/2

m m

λ0 = Z−2

φ Zλµ̃
ελ (28.1.1)

Equation (28.1.1) implies that:

lnλ0 = ln(Z−2

φ Zλ) + ε ln(µ̃) + ln(λ)

Defining G(λ, µ̃):
lnλ0 = G(λ, µ̃) + ε ln(µ̃) + ln(λ) (28.1.2)

where
G(λ, µ̃) = ln(Z−2

φ Zλ) (28.1.3)

Now the result from problem 14.5:

Zφ = 1 +O(λ2) (28.1.4)
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and the result from problem 16.1:

Zλ = 1 +
3λ

16π2

[

1

ε
+ ln

( µ

m

)

+
1

3

]

+O(λ2) (28.1.5)

Now it is necessary to adjust equation (28.1.5) in the MS renormalization scheme, which
gives:

Zλ = 1 +
3λ

16π2ε
+O(λ2) (28.1.6)

Now we use equations (28.1.4) and (28.1.6) in equation (28.1.3), giving:

G(λ, µ̃) = ln

(

1 +
3λ

16π2ε
+O(λ2)

)

(28.1.7)

From the general structure of the Zs, we can write G =
∑∞

n=1

Gn

n
. Expanding equation

(28.1.7) and matching the terms, we’re left with G = 3λ
16π2ε

+ O(ε−2). Putting this into
(28.1.2), we have:

lnλ0 =
3λ

16π2ε
+O(ε−2) +O(λ2) + ε ln(µ̃) + ln(λ)

Neglecting higher-order terms and taking the derivative, we have:

d lnλ0

d lnµ
=

3

16π2ε

dλ

d lnµ
+ ε

d ln µ̃

d lnµ
+

1

λ

dλ

d lnµ

λ0 should be independent of µ. Further, we calculate that the derivative in the second term
is one. Thus:

0 = ε+

(

1

λ
+

3

16π2ε

)

dλ

d lnµ

Multiplying by λ:

0 = ελ+

(

1 +
3λ

16π2ε

)

dλ

d lnµ

This is:
dλ

d lnµ
= −ελ

(

1 +
3λ

16π2ε

)−1

Expanding in the small λ limit:

dλ

d lnµ
= −ελ

(

1−
3λ

16π2ε

)

which is:
dλ

d lnµ
= −ελ+

3λ2

16π2

Now we match terms with equation 28.20 (our derivation is still “from scratch,” since equa-
tion 28.20 stands on its own, see the preceeding paragraph in Srednicki for the justification).
The zero-order term (in ε) determines the beta function. Thus,

β(λ) =
3λ2

16π2
+O(λ3)
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Note that this is the same result we get using equation 28.21 – provided that we determine
G correctly. Equation 28.14 is not a general result, however.

Equation (28.1.1) tells us that:

M = ln
(

Z
−1/2
φ Z1/2

m

)

As discussed above, Zφ does not contribute. Zm was calculated in problem 14.5, we must
adjust the result to the MS renormalization scheme, which gives:

Zm = 1 +
λ

16π2ε

Thus,

M = ln

(

[1 +
λ

16π2ε
]1/2
)

Expanding the radical:

M = ln

(

1 +
λ

32π2ε

)

Expanding the natural log:

M =
λ

32π2ε
+O(ε−2)

Thus:

M1 =
λ

32π2

and according to equation 28.29 (line 1):

γm(λ) =
λ

32π2
+O(λ2)

Finally, equation (28.1.1) gives us:

a = Z
1/2
φ

As discussed above, Zφ does not contribute to order λ. Thus,

a = O(λ2)

which implies:

γφ(λ) = O(λ2)

Srednicki 28.2. Repeat problem 28.1 for the theory of problem 9.3

The renormalized Lagrangian in question is:

L = −Zφ∂
µφ†∂µφ− Zmm

2φ†φ−
1

4
Zλλ(φ

†φ)2

The bare-field Lagrangian is:

L = −∂µφ†
0
∂µφ0 −m2

0
φ†
0
φ0 −

1

4
λ0(φ

†
0
φ0)

2
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Matching up the terms, we have:
φ0 = Z

1/2
φ φ

m0 = Z
−1/2
φ Z1/2

m m

λ0 = Z−2

φ Zλλ

This gives:
G = ln

(

Z−2

φ Zλ

)

M = ln
(

Z
−1/2
φ Z1/2

m

)

a = ln
(

Z
1/2
φ

)

Problems 14.6 and 16.2 give, after adjusting for the MS renormalization scheme:

Zφ = 1 +O(λ2)

Zm = 1 +
λ

8π2ε
+O(λ2)

Zλ = 1 +
5λ

16π2ε
+O(λ2)

Thus,

G = ln

(

1 +
5λ

16π2ε
+O(λ2)

)

M = ln

(

[

1 +
λ

8π2ε
+O(λ2)

]1/2
)

a = ln
(

1 +O(λ2)
)

Expanding, we find:

G1 =
5λ

16π2

M1 =
λ

16π2

a1 = 0

Using 28.21, 28.29, and 28.37, we find:

β(λ) =
5λ2

16π2
+O(λ3)

γm(λ) =
λ

16π2
+O(λ2)

γφ(λ) = O(λ2)

Srednicki 28.3. Consider the lagrangian density:

L = −
1

2
Zφ∂

µφ∂µφ−
1

2
Zmm2φ2 + Y φ−

1

2
Zχ∂

µχ∂µχ−
1

2
ZMM2χ2
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+
1

6
Zggµ̃

ε/2φ3 +
1

2
Zhhµ̃

ε/2φχ2

in d = 6− ε dimensions, where φ and χ are real scalar fields, and Y is adjusted
to make 〈0|φ(x)|0〉 = 0. (Why is no such contribution needed for χ?)

The Y term is needed to cancel the tadpole diagrams, those diagrams with only one “source,”
ie external line. It is impossible to draw a diagram with only one external χ line, since χ
enters the Lagrangian only in even powers.

(a) Compute the one-loop contributions to each of the Zs in the MS renor-
malization scheme

This is an excellent review question, so let’s work through this slowly and in detail. Let’s
use the solid line for φ particles and the dashed line for χ particles.

We can write the Lagrangian as L = L0 + L1 + Lct, where:

L0 = −
1

2
∂µφ∂µφ−

1

2
m2φ2

−
1

2
∂µχ∂µχ−

1

2
M2χ2

L1 =
1

6
Zggµ̃

ε/2φ3 +
1

2
Zhhµ̃

ε/2φχ2

Lct = −
1

2
(Zφ − 1)∂µφ∂µφ−

1

2
(Zm − 1)m2φ2

−
1

2
(Zχ − 1)∂µχ∂µχ−

1

2
(ZM − 1)M2χ2 + Y φ

L0 represents the free fields, which we are not concerned with. The remaining lines give the
interactions and vertex factors. Recall our rules for determining the vertex factors:

1. Replace all derivatives with ik, k positive for incoming particles

2. Add a factor of i

3. Erase the fields

4. Multiply through by the symmetry factor of the vertex

The vertices are therefore:

Vertex Vertex Factor

iZggµ̃
ε/2

iZhhµ̃
ε/2

−i [(Zφ − 1)k2 + (Zm − 1)m2]

−i [(Zχ − 1)k2 + (ZM − 1)M2]
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Let’s start by correcting the φ propagator. The φ propagator is given to one-loop by the
following diagrams:

We need to calculate the self-energy of these diagrams. Recall that we assign:

• a factor of −i overall (since the rules are generally presented for iΠ)

• 1 to each external line

• −i/(k2 +m2 − iǫ) for each internal line with momentum k

• the vertex factor (see table above) for each vertex

•
∫

ddℓi/(2π)
d for each loop

• 1/S, where S is the product of any left-over symmetry factors from exchanges of in-
ternal propagators and vertices (those associates with external propagators affect all
diagrams, and need not be treated separately here).

Note that the first diagram does not contribute to the self-energy, since it has no terms once
the external lines are removed. Thus, these four diagrams give:

Π(k2) =
(−i)

2

∫

d6ℓ

(2π)6
(−i)

ℓ2 +m2 − iǫ

(−i)

(k + ℓ)2 +m2 − iǫ
(iZggµ̃

ε/2)2

+
(−i)

2

∫

d6ℓ

(2π)6
(−i)

ℓ2 +M2 − iǫ

(−i)

(k + ℓ)2 +M2 − iǫ
(iZhhµ̃

ε/2)2+(−i)(−i)
[

(Zφ − 1)k2 + (Zm − 1)m2
]

We know that Zg is of the form 1+O(g2). How do we know this? The whole point of the Zs
is that they cancel the infinities in the loop corrections, and the lowest-order loop corrections
as we have seen are always two orders above the tree-level diagram. We can therefore get
rid of the Zs in the loop correction terms, since they will not contribute below O(g4). Doing
this and simplifying (note that no three-vertex terms can be drawn):

Π(k2) = −
ig2µ̃ε

128π6

∫

d6ℓ
1

ℓ2 +m2 − iǫ

1

(k + ℓ)2 +m2 − iǫ

−
ih2µ̃ε

128π6

∫

d6ℓ
1

ℓ2 +M2 − iǫ

1

(k + ℓ)2 +M2 − iǫ
−
[

(Zφ − 1)k2 + (Zm − 1)m2
]

+O([g, h]4)

Now we use Feynman’s Formula to combine the denominators in both integrals. The result
is equation 14.12:

Π(k2) = −
ig2µ̃ε

128π6

∫

d6ℓ dx
[

(ℓ+ xk)2 + x(1 − x)k2 +m2
− iǫ

]−2
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−
ih2µ̃ε

128π6

∫

d6ℓ dx
[

(ℓ+ xk)2 + x(1− x)k2 +M2
− iǫ

]−2

−
[

(Zφ − 1)k2 + (Zm − 1)m2
]

+O([g, h]4)

Now we define q = ℓ+ xk, so dq = ddℓ:

Π(k2) = −
ig2µ̃ε

128π6

∫

d6q dx
[

q2 + x(1 − x)k2 +m2
− iǫ

]−2

−
ih2µ̃ε

128π6

∫

d6q dx
[

q2 + x(1− x)k2 +M2
− iǫ

]−2

−
[

(Zφ − 1)k2 + (Zm − 1)m2
]

+O([g, h]4)

Next we make a Wick Rotation to kill these annoying ǫs.

Π(k2) =
g2µ̃ε

128π6

∫

d6q dx
[

q2 + x(1− x)k2 +m2
]−2

+
h2µ̃ε

128π6

∫

d6q dx
[

q2 + x(1− x)k2 +M2
]−2

−
[

(Zφ − 1)k2 + (Zm − 1)m2
]

+O([g, h]4)

We solve the integrals over q by using equation 14.27, and remember that the last Feynman
parameter is always integrated from 0 to 1:

Π(k2) = −
g2µ̃ε

128π3

(

2

ε
+ 1− γ

)
∫

1

0

dx
[

x(1− x)k2 +m2
]

−
h2µ̃ε

128π3

(

2

ε
+ 1− γ

)
∫

1

0

dx
[

x(1− x)k2 +M2
]

−
[

(Zφ − 1)k2 + (Zm − 1)m2
]

+O([g, h]4)

Solving the remaining integral:

Π(k2) = −
g2µ̃ε

128π3

(

2

ε
+ 1− γ

)[

1

6
k2 +m2

]

−
h2µ̃ε

128π3

(

2

ε
+ 1− γ

)[

1

6
k2 +M2

]

−
[

(Zφ − 1)k2 + (Zm − 1)m2
]

+O([g, h]4)

Now we choose the Zφ that will cause the divergent 1/ε terms – and only those terms – to
cancel (this is the MS renormalization scheme). The result is:

Zφ = 1−
(h2 + g2)µ̃ε

6(4π)3ε
+ . . .

Similarly, we choose the Zm:

Zm = 1−
(M

2

m2 h
2 + g2)µ̃ε

(4π)3ε
+ . . .

Not that it matters for our purposes, but let’s also write the self-energy:

Π(k2) = −
g2µ̃ε

128π3
(1− γ)

[

1

6
k2 +m2

]

−
h2µ̃ε

128π3
(1− γ)

[

1

6
k2 +M2

]

+ . . .
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Now let’s correct the χ propagator, which is given to one-loop by the following diagrams:

The self-energy is given by:

Π(k2) = (−i)

∫

d6ℓ

(2π)6
(−i)

ℓ2 +M2 − iǫ

(−i)

(k + ℓ)2 +m2 − iǫ
(iZhhµ̃

ε/2)2

+(−i)(−i)
[

(Zχ − 1)k2 + (ZM − 1)M2
]

Simplyifying this as before:

Π(k2) = −
ih2µ̃ε

64π6

∫

d6ℓ
1

ℓ2 +M2 − iǫ

1

(k + ℓ)2 +m2 − iǫ
−
[

(Zχ − 1)k2 + (ZM − 1)M2
]

+O([g, h]4)

Now we use Feynman’s Formula to combine the denominators in the integral.

Π(k2) = −
ih2µ̃ε

64π6

∫

d6ℓdx
[

(ℓ+ kx)2 + x(1 − x)k2 + (m2
−M2)x+M2

]−2

−
[

(Zχ − 1)k2 + (ZM − 1)M2
]

+ . . .

Now we switch to q, make a Wick Rotation (switching to q), and integrate using equation
14.27:

Π(k2) = −
h2µ̃ε

64π3

(

2

ε
+ 1− γ

)
∫

1

0

dx
[

x(1 − x)k2 +M2 + (m2
−M2)x

]

−
[

(Zχ − 1)k2 + (ZM − 1)M2
]

+. . .

Now we do the remaining integral:

Π(k2) = −
h2µ̃ε

64π3

(

2

ε
+ 1− γ

)[

1

6
k2 +M2 +

1

2
(m2

−M2)

]

−
[

(Zχ − 1)k2 + (ZM − 1)M2
]

+. . .

Choose Zχ and ZM to cancel the infinity only:

Zχ = 1−
h2µ̃ε

3(4π)3ε
+ . . .

ZM = 1−
h2µ̃ε(1 + m2

M2 )

(4π)3ε
+ . . .

Now let’s calculate the φ3 vertex. The diagrams are:
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The second diagram is the same diagram that was considered in chapter 16. The third
diagram is the same as the second, with g → h and m → M . With these substitiutions, the
answer can be obtained from equation 16.11:

V3(k1, k2, k3) = gµ̃ε/2 + (Zg − 1)gµ̃ε/2 +
g3µ̃3ε/2

(4π)3

[

1

ε
+ ln

( µ

m

)

−
1

2

∫

dF3 ln

(

D

m2

)]

+
h3µ̃3ε/2

(4π)3

[

1

ε
+ ln

( µ

M

)

−
1

2

∫

dF3 ln

(

D′

M2

)]

+ . . . (28.1.8)

where D is given by 16.5, and D’ is the same as D with m → M . Now we choose Zg to
cancel the infinity terms only:

Zg = 1−
(g2 + h3/g)µ̃ε

(4π)3ε
+ . . .

Examining this result, we see that Zg depends only on the symmetry factors and the coupling
constants; everything else (including the masses) is irrelevant. Finally we correct the φχ2

vertex. The diagrams are:

We compare these diagrams to the above, and make the necessary changes to equation
(28.1.8). The symmetry factors are the same. The non-divergent terms in equation (28.1.8)
are irrelevent. The vertex factors change to h, gh2, and h3, respectively. Thus,

V3(k1, k2, k3) = hµ̃ε/2 + (Zh − 1)hµ̃ε/2 +
gh2µ̃3ε/2

(4π)3

[

1

ε
+ . . .

]

+
h3µ̃3ε/2

(4π)3

[

1

ε
+ . . .

]

+ . . .

Thus,

Zh = 1−
(gh+ h2)µ̃ε

(4π)3ε
+ . . .

(b) The bare couplings are related to the renormalized ones via:

g0 = Z
−3/2
φ Zggµ̃

ε/2

h0 = Z
−1/2
φ Z−1

χ Zhhµ̃
ε/2

Define:

G(g, h, ε) =

∞
∑∑∑

n=1

Gn(g, h)ε
−n = ln (Z

−3/2
φ Zg)

H(g, h, ε) =

∞
∑
∑
∑

n=1

Hn(g, h)ε
−n = ln (Z

−1/2
φ Z−1

χ Zh)
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By requiring g0 and h0 to be independent of µ, and by assuming that dg/dµ and
dh/dµ are finite as ε → 0, show that

µ
dg

dµ
= −

1

2
εg +

1

2
g

(

g
∂G1

∂g
+ h

∂G1

∂h

)

µ
dh

dµ
= −

1

2
εh+

1

2
h

(

g
∂H1

∂g
+ h

∂H1

∂h

)

We have:
ln g0 = ln

(

Z
−3/2
φ Zg

)

+ ln g +
ε

2
ln µ̃

Taking the derivative with respect to µ:

d ln g0
dµ

=
∂G

∂µ
+

1

g

∂g

∂µ
+

ε

2µ

Since g0 cannot depend on µ, this must equal zero. Thus:

µ
∂g

∂µ
+ gµ

∂G

∂µ
= −

εg

2

Using the chain rule:

µ
∂g

∂µ
+ gµ

∂G

∂g

∂g

∂µ
+ gµ

∂G

∂h

∂h

∂µ
= −

εg

2

Repeating this analysis for h0:

µ
∂h

∂µ
+ hµ

∂H

∂g

∂g

∂µ
+ hµ

∂H

∂h

∂h

∂µ
= −

εh

2

These two results can be easily expressed in a matrix:

(

1 + g ∂G
∂g

g ∂G
∂h

h∂H
∂h

1 + h∂H
∂g

)(

µ ∂g
∂µ

µ ∂h
∂mu

)

= −
ε

2

(

g
h

)

This gives:
(

µ ∂g
∂µ

µ ∂h
∂mu

)

= −
ε

2

(

1 + g ∂G
∂g

g ∂G
∂h

h∂H
∂h

1 + h∂H
∂g

)−1(

g
h

)

Expanding around g, h ≈ 0, the determinant of this matrix is one, so it is easy to take the
inverse:

(

µ ∂g
∂µ

µ ∂h
∂mu

)

= −
ε

2

(

1− h∂H
∂g

−g ∂G
∂h

−h∂H
∂h

1− g ∂G
∂g

)(

g
h

)

This gives:
(

µ ∂g
∂µ

µ ∂h
∂mu

)

= −
ε

2

(

g
h

)

+
ε

2

(

h∂H
∂g

g ∂G
∂h

h∂H
∂h

g ∂G
∂g

)(

g
h

)

Expanding:
(

µ ∂g
∂µ

µ ∂h
∂mu

)

= −
ε

2

(

g
h

)

+
1

2

(

h∂H1

∂g
g ∂G1

∂h

h∂H1

∂h
g ∂G1

∂g

)

(

g
h

)

+ . . .
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The higher-order terms must be finite in the ε → 0 limit. Thus:

µ
dg

dµ
= −

1

2
εg +

1

2
g

(

g
∂G1

∂g
+ h

∂G1

∂h

)

µ
dh

dµ
= −

1

2
εh+

1

2
h

(

g
∂H1

∂g
+ h

∂H1

∂h

)

as expected.

(c) Use your results from part (a) to compute the beta functions βg(g, h) =
limε→0 µ

dg
dµ

and βh(g, h) = limε→0 µ
dh
dµ

We have:

G = ln
[

Z
−3/2
φ Zg

]

= ln

[

(

1−
(g2 + h3/g)µ̃ε

(4π)3ε

)(

1−
(h2 + g2)µ̃ε

6(4π)3ε

)−3/2
]

This gives:

G = ln

[

1−
g2 + h3/g

(4π)3ε
+

(h2 + g2)µ̃ε

4(4π)3ε
+ . . .

]

Expanding, we find G1:

G1 =
µ̃ε

(4π)3

(

h2

4
−

3g2

4
− h3g−1

)

Now we use the result from part (b):

βg(g, h) = lim
ε→0

[

−
1

2
εg +

1

2
g2

∂G1

∂g
+

1

2
gh

∂G1

∂h

]

Thus:

βg(g, h) =
1

2(4π)3
lim
ε→0

[

g2µ̃ε

(

−
3g

2
+ h3g−2

)

+ ghµ̃ε

(

h

2
− 3h2g−1

)]

This gives:

βg(g, h) =
1

4(4π)3
[

−3g3 + gh2
− 4h3

]

In the same way, we calculate the β function for h, I won’t show all the calculus:

H1 =
1

(4π)3

[

1

12
g2 − gh−

7

12
h2

]

βh =
1

(4π)3

[

g2h

12
− gh2

−
7

12
h3

]

Note: See Srednicki’s errata, this part of the problem may be stated incorrectly in your book.

It it stated correctly here.

(d) Without loss of generality, we can choose g to be positive; h can then be
positive or negative, and the difference is physically significant. (You should
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understand why this is true.) For what numerical range(s) of h/g are βg/g and
βh/h both negative? Why is this an interesting question?

See the Lagrangian: if the sign of g is changed, the Lagrangian can be invariant if the
signs of φ and h are changed to compensate (h must be changed to keep Zg the same, as
found in part (a)). If g is set to positive, the sign of h is therefore constrained, and may be
physically significant.

The question at hand is interesting because the β functions shows the coupling’s depen-
dence on energy. In the case at hand, an arbitrarily high energy means an arbitrarily weak
coupling: this is asymptotic freedom.

As for the numerical range: we want to know when:

βg =
g3

4(4π)3

[

−3 +
h2

g2
− 4

h3

g3

]

< 0

Solving this on Mathematica, we find that this is true when h/g > −.083.

Repeating this analysis for βh, we find that the inequality is solved whenever h/g < −1.7939
or h/g > .079634.

Combining these, we find that the system is asymptotically free when h/g > 0.079634.
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