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Srednicki 28.1. Consider ¢* theory,
L= —17,0000,6— 27, m2¢?* — > ZNio"
T THMT g Tm 24

in d = 4 — € dimensions. Compute the beta function to O(A?), the anomalous
dimension of m to O(\), and the anomalous dimension of ¢ to O(\).

Let’s compute the beta function “from scratch.” After that, we’ll use the equations that
Srednicki derived. We begin with the renormalized Lagrangian:

1 1 1
= ——_7 0" 4 22__Z ~e 14
L= 20006 — 3 L — SN
and the Lagrangian for bare fields:
1 1 1. ..

L= —50’%05;@0 - §m3¢3 - ﬁ)\oﬂ ¢é

The unique way to relate the bare fields to the renormalized fields is via:
b0 = Z,/*¢
mo = Z, 2 Z}*m
No = Z; 2 ZriEA (28.1.1)

Equation (28.1.1) implies that:
In\g = ln(Z(;QZ,\) +eln(fr) + In(N)

Defining G (A, f1):
InXg = G(A\ 1) + eln(@r) + In(N) (28.1.2)

where

G\ ) =In(Z,%Zy) (28.1.3)
Now the result from problem 14.5:

Zsy=1+0(N?) (28.1.4)
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and the result from problem 16.1:

B 3A |1 0 1 )
Zy=1+ 62 L +1In (m> + 3} + O(\7) (28.1.5)

Now it is necessary to adjust equation (28.1.5) in the MS renormalization scheme, which
gives:

Zy=1+ +O(\?) (28.1.6)

1672
Now we use equations (28.1.4) and (28.1.6) in equation (28.1.3), giving:

G\ 1) =In (1 + mi + O(A2)> (28.1.7)

m2e

From the general structure of the Zs, we can write G = Y | % Expanding equation

28.1.7) and matching the terms, we're left with G = -3~ 4+ O(¢72). Putting this into
1674e
(28.1.2), we have:

3 L ) ~
In X = =5 + 0(e7) + O(X) + € In(ji) + In(3)

Neglecting higher-order terms and taking the derivative, we have:

dIn Ao 3 dA dlnpg 1 dA

dlnp  160cdinp | Cdlnp | Ndlng

Ao should be independent of p. Further, we calculate that the derivative in the second term

is one. Thus:
—ET AN T 16n% ) dlnp

Multiplying by A:
3\ d\
=eA 14+ ——) —
0=c¢ +< - 16%25) dlnp

This is:

Expanding in the small A limit:

which is:
dx s 32
dlnp 1672

Now we match terms with equation 28.20 (our derivation is still “from scratch,” since equa-
tion 28.20 stands on its own, see the preceeding paragraph in Srednicki for the justification).
The zero-order term (in ¢) determines the beta function. Thus,

32
1672

BA) = +0(X)
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Note that this is the same result we get using equation 28.21 — provided that we determine
G correctly. Equation 28.14 is not a general result, however.

Equation (28.1.1) tells us that:
M= (2,7 2)?)

As discussed above, Z; does not contribute. Z,, was calculated in problem 14.5, we must
adjust the result to the MS renormalization scheme, which gives:

Zm =1
+ 1672¢

M =In ([1 + L]W)

1672¢

Thus,

Expanding the radical:

A
M =In (1 + —3%25)

Expanding the natural log:

Thus:

and according to equation 28.29 (line 1):

B A
3972

Ym () +0(X)

Finally, equation (28.1.1) gives us:

L 1/2
a—Z¢

As discussed above, Z, does not contribute to order A. Thus,
a=0()\?)

which implies:

76(A) = O(\?)
Srednicki 28.2. Repeat problem 28.1 for the theory of problem 9.3

The renormalized Lagrangian in question is:
L= ~2,0010,0 — Zuni6'6 — 123\ (610)°
The bare-field Lagrangian is:
L= 064000 — midloo — haldhdo)
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Matching up the terms, we have:
1/2
¢o =20
moy = Z(;l/zZ;l/zm

Ao = Z(;zZA)\
This gives:

G =1n(2,22,)
M =1 (2,7 2)?)
_ 1/2
a=In (Z 3 )
Problems 14.6 and 16.2 give, after adjusting for the MS renormalization scheme:

Zy=1+0(\?)

Zm =1+ +O0(N\?)

8m2e

5\
Zy=1+4—r A2
A +167r25+0( )
Thus,

_ 5)\ 2
G=In (1 1o T O ))

M =1n ({1 + 8;25 + O(Az)] 1/2)

a=1In(1+0(N\))

Expanding, we find:

a; = 0
Using 28.21, 28.29, and 28.37, we find:
52 3
A
MmN = 15
16(A) = O(X?)
Srednicki 28.3. Consider the lagrangian density:

+O(N\?)

1 " 1 2 .2 1 L 1 5 o

4



1 - 1 e
+ ZagiT 2" + o Znhii 2 ox’
in d = 6 — € dimensions, where ¢ and x are real scalar fields, and Y is adjusted

to make (0|¢(x)|0) = 0. (Why is no such contribution needed for x7)

The Y term is needed to cancel the tadpole diagrams, those diagrams with only one “source,”
ie external line. It is impossible to draw a diagram with only one external x line, since y
enters the Lagrangian only in even powers.

(a) Compute the one-loop contributions to each of the Zs in the MS renor-
malization scheme

This is an excellent review question, so let’s work through this slowly and in detail. Let’s
use the solid line for ¢ particles and the dashed line for y particles.

We can write the Lagrangian as £ = Lo + L1 + L, where:

1 1 1 1
EO = —58‘%@@ — §m2¢2 — 58”)(8#)( — §M2X2

1 1
Ly = gzggﬂ 4% + §Zhh,u 2\

Lo = —%(Z¢ — 1)0"¢0,¢ — %(Zm —1)m?¢?* — %(ZX — 1)0"xOux — %(ZM —1)M**+Y¢

Ly represents the free fields, which we are not concerned with. The remaining lines give the
interactions and vertex factors. Recall our rules for determining the vertex factors:

1. Replace all derivatives with ik, k positive for incoming particles
2. Add a factor of i
3. Erase the fields

4. Multiply through by the symmetry factor of the vertex

The vertices are therefore:

Vertex Vertex Factor
,izgglaeﬁ
/
/
/
—
\\
\ iZphji!?
e —i[(Zy — 1)/€2 + (Zm — 1)m2]
—mm X Si(Z = DR A+ (Z — 1)M2)




Let’s start by correcting the ¢ propagator. The ¢ propagator is given to one-loop by the

following diagrams:
/7N
\
NG
— r 7}<
~__7

We need to calculate the self-energy of these diagrams. Recall that we assign:

e a factor of —i overall (since the rules are generally presented for iII)
e 1 to each external line

—i/(k? + m? — i¢) for each internal line with momentum k

the vertex factor (see table above) for each vertex

[ d%;/(2m)? for each loop

1/S, where S is the product of any left-over symmetry factors from exchanges of in-
ternal propagators and vertices (those associates with external propagators affect all
diagrams, and need not be treated separately here).

Note that the first diagram does not contribute to the self-energy, since it has no terms once
the external lines are removed. Thus, these four diagrams give:

oy _ (=0) [ d% (=) (=) L o/2y
HF) =5 /(27r)6€2+m2—z'e(k+€)2+m2—z'e(lzgg’u/)

), / e () (=) (1 Zuhii 24 (—i)(~0) [(Zs — D + (Z — 1)mi?]
2 ) @m)+ M2 —ie(k+0)2+ M? —ie ¢ "

We know that Z,, is of the form 1+ O(g?). How do we know this? The whole point of the Zs

is that they cancel the infinities in the loop corrections, and the lowest-order loop corrections

as we have seen are always two orders above the tree-level diagram. We can therefore get

rid of the Zs in the loop correction terms, since they will not contribute below O(g*). Doing

this and simplifying (note that no three-vertex terms can be drawn):

s A2 E 1 1
T(k?) = -2 - /d6£
() 12876 02 +m? —ie (k+0)2 +m? —ie

ih* 6 1 1 2 2 4
— — |(Zy — 1 Lim — 1
1287?6/0[£€2+M2—ie(k:+£)2+M2—ie [(Zs = D+ (Zn = 1)m"] + O(lg, 1Y)

Now we use Feynman’s Formula to combine the denominators in both integrals. The result
is equation 14.12:

s 2 €
T(k2) = _38‘;6 /d6€ de [(€+ xk)? + 2(1 — )k + m? —ie]



B ihsz
12876
Now we define ¢ = £ + zk, so d? = d/:

/dﬁﬁ do [(0+ xk)® + z(1 — 2)k* + M? — ie] 2 [(Zs — 1)k + (Z,, — 1)m?|+0([g, h]*)

;2 meE
TI(k?) = _38’;6 /dﬁq dr [¢* + (1 — 2)k? + m? — ie]

ih? Iae
12876
Next we make a Wick Rotation to kill these annoying es.

/dﬁq dz [¢* + z(1 — 2)k* + M? — ie] - [(Zs — V)E* + (Zn, — )m?] + O([g, h]*)

2 ~e
(k?) = 1g2£:TG /dbﬁ dz [¢* + z(1 — 2)k* + m2}_2

2r~e
1% 6— _2 2 21—
+1287r6/d g dz [¢* 4+ 2(1 — 2)k* + M?]
We solve the integrals over § by using equation 14.27, and remember that the last Feynman

parameter is always integrated from 0 to 1:

) = — 25 (2“_7) /Oldx [2(1 — 2)k + m?]

12873 \ ¢

2

— [(Zs = DE* + (Z — 1)m*] + O([g, 1]")

_1};253 (g - 7) /0 da [2(1 = 2)k* + M?] = [(Zy = DI + (Zo = )m®] + O([g, 1]")

Solving the remaining integral:

2r~e
oy . gp 2 1, 2

h2/1€
12873

Now we choose the Z,; that will cause the divergent 1/ terms — and only those terms — to
cancel (this is the M.S renormalization scheme). The result is:

(g 11— 7) Ekﬂ n MQ} —[(Zs — VE* + (Z,, — 1)m?] + O([g, h]*)

(h* + ¢*)i°

6myPe

Zy=1-

Similarly, we choose the Z,,:

(MZR2 + ) jif

Zp=1—
(4m)e

Not that it matters for our purposes, but let’s also write the self-energy:

2~ 2~
g pe 1 he e 1
(k%) = — 3 (1—7) {6/3 - m2} — ToR3 (1—7) [6k2 + Mﬂ +...




Now let’s correct the y propagator, which is given to one-loop by the following diagrams:

The self-energy is given by:

a0 (=) (—i)

(k) = (=) / (2m)8 02 + M? —ie (k + £)?> + m? — ie (iZhhﬂ€/2)2

+(=i) (1) [(Z — DE* + (Zar — 1) M?]
Simplyifying this as before:
ih2ﬂ€

(k) = ~ 6476

| i a2~ DR+ (2 - DM 00 A1)

Now we use Feynman’s Formula to combine the denominators in the integral.
7 h2 Iae
6476

2

Mk = /dﬁgdfc [(€+ k2)? + 2(1 = 2)k? + (m? — MA)a + M?]”

—[(Zy =D+ (Zy — 1)M?] + ...

Now we switch to ¢, make a Wick Rotation (switching to §), and integrate using equation
14.27:

1(k?) = —gzig @ +1-— 7) /0 da [x(1 — 2)k* + M? + (m? — M?)z] ~[(Z, — DE* + (Zy — M| +. ..

Now we do the remaining integral:

h2 ~E 2 1 1
() =~ (2417 ) [§8 07 + 007 = 0%) | (2 = 08+ (2 = 008

Choose Z, and Zj; to cancel the infinity only:

h2 ﬂe

Zy=1———1—
X 3(4m)3e *

CRE(L+ )

Iy =1
M (4m)3e

Now let’s calculate the ¢® vertex. The diagrams are:

% {< i
N\



The second diagram is the same diagram that was considered in chapter 16. The third
diagram is the same as the second, with ¢ — h and m — M. With these substitiutions, the
answer can be obtained from equation 16.11:

3~3€/2 1 1 D
~c ~c g
Va(ki, ko, ks) = gt + (Z, — D)gii” + (zﬁr)i’» ngrln (%) B §/dF3ln <W)}
———|-t+In(—)—= Fsln | — 28.1.
+(47r)3 {s_l_n(M) 2/d3n<M2)}+ (28.1.8)

where D is given by 16.5, and D’ is the same as D with m — M. Now we choose Z, to
cancel the infinity terms only:

(9% + 1P/ g)ir°
7 =12 T/
0 @npe T

Examining this result, we see that Z, depends only on the symmetry factors and the coupling
constants; everything else (including the masses) is irrelevant. Finally we correct the ¢y
vertex. The diagrams are:

/ /
/ / /
/ s
4< \ |
\ / Mo
\ \ \
\ \ \

We compare these diagrams to the above, and make the necessary changes to equation
(28.1.8). The symmetry factors are the same. The non-divergent terms in equation (28.1.8)
are irrelevent. The vertex factors change to h, gh?, and h3, respectively. Thus,

h2la3€/2 1 h3la3€/2 1
— R (7, — D2 IR 2 — =+ .+
%(klak%ki’») 1% +( h ) H + (471.)3 + + (47’(‘)3 5+ +
Thus,
(gh + n?)jif
Iy =1 - = ‘7'
h (47)3¢e

(b) The bare couplings are related to the renormalized ones via:

9o = Z,** Z,gi1*/*

ho = Z,*Z ' Zhj*/?

Define: -~
G(g,h,e) =Y Gulg,h)e™™ =n(Z,°*2,)
n=1

H(g,h,e) =Y H,(g,h)e ™™ =1n(2,"?2;'Z,)
n=1
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By requiring go and hg to be independent of p, and by assuming that dg/dp and
dh/dp are finite as € — 0, show that

dg 1 n 1 ( 0G, —|—h8G1>
“du B 289 29 9 Og oh
dh 1 h—|—1h< 8H1+h8H1>
— = ——€ —
udu 2 2 g Og oh

We have: .
Ingy =1In (Z;g/ng) +Ing+ 3 Ing

Taking the derivative with respect to u:
dlngs, 0G 109 €

dp  Ou  gop  2p

Since go cannot depend on p, this must equal zero. Thus:
99 , 96 _ &9
Using the chain rule:
% 060  0Goh &g
Fou "M agou " Honon = 2
Repeating this analysis for hy:
oh OH 0g OH 0h ch
17 +hpu— o =
o dg Op oh Ou 2
These two results can be easily expressed in a matrix:
G oG 9
()R

This gives:
—1

pg \ _ e (1+9% g g
fip 2\ gl 14+n8l h

Expanding around g, h = 0, the determinant of this matrix is one, so it is easy to take the

inverse: Mg_g e h%—H —g% ,
L = —— 9
(e ) =3 (g 20 ) (3)
This gives: , o o
(o )= =300) 2 G 52 ) (3)
Expanding;:

() z()o2(1 ) (0)-
Homa 2\ h ) 2\ G g% )\ h
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The higher-order terms must be finite in the ¢ — 0 limit. Thus:

@—_1 _|_1 %—Fh%
'ud,u— 29T oY gag oh

dh 1 1 0H, 0H,
p— = 6h+2h<gag +h8h)

as expected.

(c) Use your results from part (a) to compute the beta functions 3,(g,h) =
lim._,o “Z_ﬂ and Br(g,h) = lim._, u% We have:

This gives:

2, p3 2 | 2\ie
Gzln{l—g thi/g, b te)i +}

(4m)3e 4(4m)3e
Expanding, we find G:

_ :I:vl’€ h_2_3_92_3—1
Gl_(4w)3<4 TR

Now we use the result from part (b):

o 1 1 ,0G; 1 0G,
By(g,h) = ll_lf(l) {—559 T 59 D9 + ighﬁ}

Thus: . 3 )
h) = li 2~¢ __g h3 -2 h~a v h2 -1
Be(g,h) S04y o {gu ( 5t ) +ghit | 5 =3k
This gives:

1
By(g,h) = ETSE [—3¢" + gh® — 4h?]

In the same way, we calculate the § function for A, I won’t show all the calculus:

"= {igz —gh — 1h2}

(4m)3 |12 12
B = 1 g2_h —gh? — lh3
"7 A3 | 12 12

Note: See Srednicki’s errata, this part of the problem may be stated incorrectly in your book.
It it stated correctly here.

(d) Without loss of generality, we can choose g to be positive; h can then be
positive or negative, and the difference is physically significant. (You should
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understand why this is true.) For what numerical range(s) of h/g are 3,/g and
Br/h both negative? Why is this an interesting question?

See the Lagrangian: if the sign of ¢ is changed, the Lagrangian can be invariant if the
signs of ¢ and h are changed to compensate (h must be changed to keep Z, the same, as
found in part (a)). If g is set to positive, the sign of h is therefore constrained, and may be
physically significant.

The question at hand is interesting because the [ functions shows the coupling’s depen-
dence on energy. In the case at hand, an arbitrarily high energy means an arbitrarily weak

coupling: this is asymptotic freedom.

As for the numerical range: we want to know when:

3 2 3
A P Y
5‘7—4(4%)3[ 3+92 493}«)

Solving this on Mathematica, we find that this is true when h/g > —.083.

Repeating this analysis for 5, we find that the inequality is solved whenever h/g < —1.7939
or h/g > .079634.

Combining these, we find that the system is asymptotically free when h/g > 0.079634.
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