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Srednicki 24.1. Show that 6;; in equation 24.4 must be antisymmetric if R is
orthogonal.

Orthogonality of R implies that:
I=RR"'=RR"
Writing this in index notation:
Sk = Rij(R")jr = Rij Ry,
Now use equation 24.4:
0t = (855 + 03 + O(6%)) (645 + Oy + O(6%))
Expanding:
Oik = 0ij0k; + 0ij0k; + 0ij0k; + O(6°)
Using the ds to eliminate j on the right hand side:
Oit, = Oi + Ori + Oir + O(67)

5ik = (Skia SO:
ik = Ok + Opi + Ot + O(6?)

Which of course gives, (to first order):
Oik = — 0Ok
as expected.
Srednicki 24.2. By considering the SO(N) transformation R'"'R™'R’'R, where

R and R’ are independent infinitesimal SO(N) transformations, prove equation
24.7.

Let’s start by considering the transformation as instructed. Equation 24.4 gives:
RZ']' = 5ij + 92‘]' -+ 0(62)
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Let’s suppress the index notation to make this a little cleaner. Let’s also work to second
order (why? try it to first order, it will be trivial). Then:

R=1+0+r0"+0(6)
where k can be any real or imaginary number. Taylor expanding:
RY'=1-0+(1-r)0*+0(6°)
Writing the series of infinitesimal transformations in question, we have:
ROARTRR=[1-0+1-r)0?[1 -0+ (1 — k)01 + 0 + 0?1 + 0 + k0% + O(6%)

Now we expand this (remember that the 6 terms do not necessarily commute!) and cancel
the terms where possible, the result is that:

RIRT'RR=1+00-00+ 00

Now let’s use equation 24.6. This equation is a little bit confusing because there are two
fs, which will be identical when I drop the subscripts and superscripts. To avoid this, let’s
rename the right-hand side 6 as 6. Then:

ROI'RTRR =1+ (—i0'T)(—i0T) — (—ifT)(—i0'T") + O(6?)

On the left-hand side, we have just a multiplication of four orthogonal, infinitesimal matrices,
which is itself an infinitesimal matrix. On the right hand side, we simplify:

1+60"=1-0T'0T +0T0'T + O(6?)
which is: B o o
1—i0"T" =1—-0T'0T +0T0'T" + O(6®)

Recall that the  are just real parameters, so they commute with everything. Cancelling the
delta terms, and ignoring higher-order terms, we have:

—i0"T" = —0'0T'T + 00'TT’
which is: B o
0"'T" = —i0'0[T', T

which gives: o B
00T, T') = —i0"T"

Now if the @ terms are zero, then the symmetry is Abelian, and equation 24.7 is trivial. If
these terms are nonzero, then we can rewrite as:

_97/
T Tl — 4 _ Tl/
TT=i%g

a N e_c C
[T, T% =i <_W) T
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Changing notation, we have:



Defining this term in parenthesis to be the structure constant, we have:
[Ta7 Tb] — Z'fabcTc

Note: [ find Srednicki’s solution to be a little misleading because he drops the second-order
terms in equation 24.4. Hence, his solution is not fully general: he claims to work to second
order, but restricts himself to the matrices which have no second-order terms. This was ad-
dressed above by the introduction of the second-order coefficient k. Fortunately, k cancels,
so the result is the same.

Srednicki 24.3. (a) Find the Noether current j#® for the transformation of equa-
tion 24.6.

Srednicki 22.6 is:
oL

"= 0,00

Recall from chapter 22 that it is conventional to factor out the infinitesimal parameter.
Hence,

en OL N
0ot = —8(8u¢(x))5¢( ) (24.3.1)

The first term of the Lagrangian can be rewritten as:

1
L= _5 ,u(bialxgbigw’

Since ¢ is a diagonal matrix:
1
L= —5 ucbiauébigw

Then: or
S = 0,0
0(0,0(x)) g
which is: ar
S = 0,
9(0,9(x))
Plugging this into equation (24.3.1) gives:
01 = —0"p; dp(x) (24.3.2)
Now, the transformation in question is:
¢i = Rijd;

which is:
¢i = (0ij + 0:5)0; = ¢i + 0i50,
From whence it follows that:

dp(z) = 0:59;



which gives, using equation (24.3.2):
05" = —0"¢ib;;9,

Using Srednicki 24.6:
054 = =0"pi(=)0° (1) 1505
which gives:
J* =10"9i(T)i;¢;
(b) Show that [¢;, Q] = (T%);;¢;, where Q is the Noether charge.

6:,Q) = / Pyl ()]
— 60,0 = / BPyl6u(2), i0°6,(T*)1s65(4)]

e [60Q] = —i / @y (n(2), TL)(T*):565 (1)

— [¢0, Q] = (T")ij;
(c) Use this result, equation 24.7, and the Jacobi identity (see problem 2.8) to
show that [QA, QB] = ifachc.

Recall that the Jacobi identity deals with commutators of the form [[A, B],C]. In this
case, we'll consider the commutator [[¢;, Q,], @s]. Then the Jacobi Identity states:

[[Cb“ Qa]a Qb] + [[Qba gbz]v Qa] = _HQm Qb]a ¢z]

which implies:
HQSM Qa]7 Qb] - [[¢z; Qb]v Qa] = _[[Qm Qb]v ¢Z]

Using the result from part (b):

[(T)i35, Qo] — [(T")ij¢5: Qal = —[[Qu, Qu), 6]
Since we've used index notation, (7);; is just a real parameter, and so:

(T%)i5(¢5, Qb) = (T")i5(¢5, Qal = —[[Qa> Qs], 4]
Using the result from part (b) again:

(T)i;(T*) ik — (T)ij (T*)ju b = —[[Qa> Q), ¢1]

Dropping the index notation, and labeling ¢ with the only nontrivial index (k and j will
multiply out, but i is an “external” parameter, so we label ¢ with i), we have:

TT ¢ — T°T%; = —[[Qa, Qs), i)

which is:

(TaTb — TbTa)(bi = _[[Qay Qb]v (bz]
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implying:

[T, "¢ = ~[[Qa> Qu], 4]
Using equation 24.7:

if T = ~[[Qa, Qs 4]

which implies:

[0, [Qa, Qul] = i f**T ¢, (24.3.3)
We can also use the result of (b) directly:
¢4, Qc] = T ¢
Contracting both sides by 7 fe¢:
(63,0 f*"Qc] = i f**T ¢, (24.3.4)

where fo¢ is a real parameter and commutes with everything: its placement in the above
equation is merely suggestive. Of course, the right hand sides of equation (24.3.3) and
equation (24.3.4) are equal. It follows that:

[Qa’ Qb] — Z‘fabCQC
as expected. [Note that I'm playing fast and loose with the position of the Latin characters:

sometimes they are subscripts, sometimes superscripts. Since Latin characters represent
spatial indices only, there is no significant difference between the two.

Srednicki 24.4. The elements of the group SO(N) can be defined as N x N
matrices R that satisfy

The elements of the symplectic group Sp(2N) can be defined as 2N X 2N matrices
S that satisfy

Sii’Sjj’ni’j’ = Nij
where the symplectic metric n;; is antisymmetric, 1;; = —n;;, and squares to
minus the identity: 2 = —I. One way to write 7 is

(0 I
=\ -1 0
where I is the N X N identity matrix. Find the number of generators of Sp(2IN).

Recall that the generator is the first-order term in the Taylor Expansion of the group being
imposed infinitesimally. Taking this as an infinitesimal transformation, let’s write:

S=1+0

where 6 is the generator (after factoring out i and the differential). We can write:

0 = < é g ) (24.3.5)



Now let’s examine the condition for the group. We have:
Sii’Sjj’ni’j’ = T]Z]
We can rewrite this as:
Sirtiryr(ST)jj = i

Dropping the index notation:
SnST =n

This gives:
(14+0)n(1+6") =n

— 4007 +0n+ o’ =9
— 00" + 0y + no* =0

The last term can be dropped since it contains two differentials. Hence,
no" +0n =0

Now we have 6 given by (24.3.5) and n given by (in one representation) equation 24.16.

Then:
O_( BT DT )+(—B A)_(—(B—BT) A+DT)
T\ AT T -D C )\ -(A+D") Cc-CT
The number of generators is given by the number of degrees of freedom of # — a maximum of
4N?%. A has no restrictions, and contributes N? degrees of freedom. B and C have to equal
their own transposes, so they have L(N)(N + 1) degrees of freedom each. D must be the

2
negative transpose of A, so it contributes no degrees of freedom. Combining these, we find

that there are |2N? 4+ N | generators. This will be independent of the form of the generator,
so our use of equation 24.16 is valid.




