
Srednicki Chapter 24
QFT Problems & Solutions

A. George

November 4, 2012

Srednicki 24.1. Show that θij in equation 24.4 must be antisymmetric if R is
orthogonal.

Orthogonality of R implies that:

I = RR−1 = RRT

Writing this in index notation:

δik = Rij(R
T )jk = RijRkj

Now use equation 24.4:

δik = (δij + θij +O(θ2))(δkj + θkj +O(θ2))

Expanding:
δik = δijδkj + δijθkj + θijδkj +O(θ2)

Using the δs to eliminate j on the right hand side:

δik = δki + θki + θik +O(θ2)

δik = δki, so:
δik = δik + θki + θik +O(θ2)

Which of course gives, (to first order):

θik = −θki

as expected.

Srednicki 24.2. By considering the SO(N) transformation R′−1R−1R′R, where
R and R′ are independent infinitesimal SO(N) transformations, prove equation
24.7.

Let’s start by considering the transformation as instructed. Equation 24.4 gives:

Rij = δij + θij +O(θ2)
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Let’s suppress the index notation to make this a little cleaner. Let’s also work to second
order (why? try it to first order, it will be trivial). Then:

R = 1 + θ + κθ2 +O(θ3)

where κ can be any real or imaginary number. Taylor expanding:

R−1 = 1− θ + (1− κ)θ2 +O(θ3)

Writing the series of infinitesimal transformations in question, we have:

R′−1R−1R′R = [1− θ′ + (1− κ′)θ′2][1− θ + (1− κ)θ2][1 + θ′ + κ′θ′2][1 + θ + κθ2] +O(θ3)

Now we expand this (remember that the θ terms do not necessarily commute!) and cancel
the terms where possible, the result is that:

R′−1R−1R′R = 1 + θ′θ − θθ′ +O(θ3)

Now let’s use equation 24.6. This equation is a little bit confusing because there are two
θs, which will be identical when I drop the subscripts and superscripts. To avoid this, let’s
rename the right-hand side θ as θ̄. Then:

R′−1R−1R′R = 1 + (−iθ̄′T ′)(−iθ̄T )− (−iθ̄T )(−iθ̄′T ′) +O(θ3)

On the left-hand side, we have just a multiplication of four orthogonal, infinitesimal matrices,
which is itself an infinitesimal matrix. On the right hand side, we simplify:

1 + θ′′ = 1− θ̄′T ′θ̄T + θ̄T θ̄′T ′ +O(θ3)

which is:
1− iθ̄′′T ′′ = 1− θ̄′T ′θ̄T + θ̄T θ̄′T ′ +O(θ3)

Recall that the θ̄ are just real parameters, so they commute with everything. Cancelling the
delta terms, and ignoring higher-order terms, we have:

−iθ̄′′T ′′ = −θ̄′θ̄T ′T + θ̄θ̄′TT ′

which is:
θ̄′′T ′′ = −iθ̄′θ̄[T ′, T ]

which gives:
θ̄′θ̄[T, T ′] = −iθ̄′′T ′′

Now if the θ̄ terms are zero, then the symmetry is Abelian, and equation 24.7 is trivial. If
these terms are nonzero, then we can rewrite as:

[T, T ′] = i
−θ̄′′

θ̄′θ̄
T ′′

Changing notation, we have:

[T a, T b] = i

(
− θ̄c

θ̄bθ̄a

)
T c
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Defining this term in parenthesis to be the structure constant, we have:

[T a, T b] = ifabcT c

Note: I find Srednicki’s solution to be a little misleading because he drops the second-order
terms in equation 24.4. Hence, his solution is not fully general: he claims to work to second
order, but restricts himself to the matrices which have no second-order terms. This was ad-
dressed above by the introduction of the second-order coefficient κ. Fortunately, κ cancels,
so the result is the same.

Srednicki 24.3. (a) Find the Noether current jµa for the transformation of equa-
tion 24.6.

Srednicki 22.6 is:

jµ =
∂L

∂(∂µφ(x))
δφ(x)

Recall from chapter 22 that it is conventional to factor out the infinitesimal parameter.
Hence,

θajµ =
∂L

∂(∂µφ(x))
δφ(x) (24.3.1)

The first term of the Lagrangian can be rewritten as:

L = −1

2
∂µφi∂νφig

µν

Since g is a diagonal matrix:

L = −1

2
∂µφi∂µφig

µµ

Then:
∂L

∂(∂µφ(x))
= −∂µφigµµ

which is:
∂L

∂(∂µφ(x))
= −∂µφi

Plugging this into equation (24.3.1) gives:

θajµa = −∂µφi δφ(x) (24.3.2)

Now, the transformation in question is:

φi = Rijφj

which is:
φi = (δij + θij)φj = φi + θijφj

From whence it follows that:
δφ(x) = θijφj
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which gives, using equation (24.3.2):

θajµa = −∂µφiθijφj

Using Srednicki 24.6:
θajµa = −∂µφi(−i)θa(T a)ijφj

which gives:
jµa = i∂µφi(T

a)ijφj

(b) Show that [φi,Q] = (T a)ijφj, where Q is the Noether charge.

[φi, Q] =

∫
d3y[φi, j

0(y)]

=⇒ [φi, Q] =

∫
d3y[φi(x), i∂0φi(T

a)ijφj(y)]

=⇒ [φi, Q] = −i
∫
d3y[φi(x),Πi](T

a)ijφj(y)

=⇒ [φi, Q] = (T a)ijφj

(c) Use this result, equation 24.7, and the Jacobi identity (see problem 2.8) to
show that [QA,QB] = ifabcQC.

Recall that the Jacobi identity deals with commutators of the form [[A,B], C]. In this
case, we’ll consider the commutator [[φi, Qa], Qb]. Then the Jacobi Identity states:

[[φi, Qa], Qb] + [[Qb, φi], Qa] = −[[Qa, Qb], φi]

which implies:
[[φi, Qa], Qb]− [[φi, Qb], Qa] = −[[Qa, Qb], φi]

Using the result from part (b):

[(T a)ijφj, Qb]− [(T b)ijφj, Qa] = −[[Qa, Qb], φi]

Since we’ve used index notation, (T a)ij is just a real parameter, and so:

(T a)ij[φj, Qb]− (T b)ij[φj, Qa] = −[[Qa, Qb], φi]

Using the result from part (b) again:

(T a)ij(T
b)jkφk − (T b)ij(T

a)jkφk = −[[Qa, Qb], φi]

Dropping the index notation, and labeling φ with the only nontrivial index (k and j will
multiply out, but i is an “external” parameter, so we label φ with i), we have:

T aT bφi − T bT aφi = −[[Qa, Qb], φi]

which is:
(T aT b − T bT a)φi = −[[Qa, Qb], φi]
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implying:
[T a, T b]φi = −[[Qa, Qb], φi]

Using equation 24.7:
ifabcT cφi = −[[Qa, Qb], φi]

which implies:
[φi, [Qa, Qb]] = ifabcT cφi (24.3.3)

We can also use the result of (b) directly:

[φi, Qc] = T cφi

Contracting both sides by ifabc:

[φi, if
abcQc] = ifabcT cφi (24.3.4)

where fabc is a real parameter and commutes with everything; its placement in the above
equation is merely suggestive. Of course, the right hand sides of equation (24.3.3) and
equation (24.3.4) are equal. It follows that:

[Qa, Qb] = ifabcQc

as expected. [Note that I’m playing fast and loose with the position of the Latin characters:
sometimes they are subscripts, sometimes superscripts. Since Latin characters represent
spatial indices only, there is no significant difference between the two].

Srednicki 24.4. The elements of the group SO(N) can be defined as N × N
matrices R that satisfy

Rii′Rjj′δi′j′ = δij

The elements of the symplectic group Sp(2N) can be defined as 2N × 2N matrices
S that satisfy

Sii′Sjj′ηi′j′ = ηij

where the symplectic metric ηij is antisymmetric, ηij = −ηji, and squares to
minus the identity: η2 = −I. One way to write η is

η =

(
0 I
−I 0

)
where I is the N × N identity matrix. Find the number of generators of Sp(2N).

Recall that the generator is the first-order term in the Taylor Expansion of the group being
imposed infinitesimally. Taking this as an infinitesimal transformation, let’s write:

S = 1 + θ

where θ is the generator (after factoring out i and the differential). We can write:

θ =

(
A B
C D

)
(24.3.5)
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Now let’s examine the condition for the group. We have:

Sii′Sjj′ηi′j′ = ηij

We can rewrite this as:
Sii′ηi′j′(S

T )j′j = ηij

Dropping the index notation:
SηST = η

This gives:
(1 + θ)η(1 + θT ) = η

=⇒ η + ηθT + θη + θηθT = η

=⇒ ηθT + θη + θηθT = 0

The last term can be dropped since it contains two differentials. Hence,

ηθT + θη = 0

Now we have θ given by (24.3.5) and η given by (in one representation) equation 24.16.
Then:

0 =

(
BT DT

−AT −CT

)
+

(
−B A
−D C

)
=

(
−(B −BT ) A+DT

−(A+DT ) C − CT

)
The number of generators is given by the number of degrees of freedom of θ – a maximum of
4N2. A has no restrictions, and contributes N2 degrees of freedom. B and C have to equal
their own transposes, so they have 1

2
(N)(N + 1) degrees of freedom each. D must be the

negative transpose of A, so it contributes no degrees of freedom. Combining these, we find

that there are 2N2 +N generators. This will be independent of the form of the generator,
so our use of equation 24.16 is valid.
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