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Srednicki 21.1. Show that

Γ(φ) = W(Jφ)−
∫

ddxJφφ

where Jφ is the solution of
δ

δJ(x)
W(J) = φ(x)

for a specified φ(x).

By comparing equations 21.14 and 21.18, we find that:

δ

δJ(x)
W (J) = φ(x) (21.1.1)

Meanwhile, equation 21.12 gives:

W (J) = Γ(φJ) +

∫
ddxJφJ

This is true for all J. Now let’s choose the J that satisfies equation 21.21:

W (Jφ) = Γ(φJ) +

∫
ddxJφφJ

Comparing equation (21.1.1) with equation 21.21, we find that φ = φJ . Therefore,

W (Jφ) = Γ(φ) +

∫
ddxJφφ

which gives:

Γ(φ) = W (Jφ)−
∫
ddxJφφ

which is equation 21.20.

1



Srednicki 21.2 Symmetries of the quantum action. Suppose that we have a set of
fields φa(x) and that both the classical action S(φ) and the integration measure
Dφ are invariant under

φa→
∫∫∫
ddyRab(x, y)φb(y)

for some particular function Rab(x, y). Typically Rab(x, y) is a constant matrix
times δd(x− y), or a finite number of derivatives of δd(x− y); see section 22-24
for some examples.

(a) Show that W(J) is invariant under

Ja(x)→
∫∫∫
ddyJb(y)Rba(y,x)

Equation 21.3 implies that W (J) is invariant if Z(J) is. Equation 21.1 shows that:

Z(J) =

∫
Dφexp

[
iS(φ) + i

∫
ddxJφ

]
This is true for all φ. Let’s decide that the φ in question is φ′ =

∫
ddyRab(x, y)φb. Notice that

this is not necessarily a transformation, just a change of the dummy integration variable,
which is always allowed. Then,

Z(J) =

∫
Dφ′exp

[
iS(φ′) + i

∫
ddxJφ′

]
The problem statement tells us that the integration measure and the classical action are
invariant. Hence:

Z(J) =

∫
Dφexp

[
iS(φ) + i

∫
ddxJφ′

]
Using the definition of φ′ in the remaining term gives:

Z(J) =

∫
Dφexp

[
iS(φ) + i

∫
ddxddyJaRab(x, y)φb

]
(21.2.1)

where the J assumes a subscript to indicate that it is still to be multiplied by the φ′.

Now let’s use the transformation of J as written in equation 21.3:

Z(J) =

∫
Dφexp

[
iS(φ) + i

∫
ddxddyJbRba(y, x)φa

]
The dummy indices and the dummy variables can be reversed. So,

Z(J) =

∫
Dφexp

[
iS(φ) + i

∫
ddxddyJaRab(x, y)φb

]
(21.2.2)
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Note that equation (21.2.1) and (21.2.2) are equal: thus, the transformation of J leaves Z(J)
– and hence W(J) – invariant.

(b) Use eqs. 21.20 and 21.23 to show that the quantum action Γ(φ) is invari-
ant under equation 21.22. This is an important result that we will use frequently.

Equation 21.20 states:

Γ(φ) = W (Jφ)−
∫
ddxJφφ

Transforming Γ(φ) as indicated, we have:

Γ(φ)→ W (J ′φ)−
∫
ddxddyJ ′φRab(x, y)φb(y)

Now Jφ depends on φ as well. Now let’s impose the transformation Jφ →
∫
ddzJφ(z)Rab(x, z).

Otherwise we can’t get back to equation 21.20. Using this assumption, we have:

Γ(φ)→ W (J ′φ)−
∫
ddxddyddzJφ(R−1)ab(x, y)δ(x− y)Rab(x, y)φb(y)

At this point we have to assume that the R matrix has a delta function in it at some level.
Srednicki stated that this is typically true, but we see that it must be absolutely true for
this statement to hold. Then the R functions cancel, and we’re left with:

Γ(φ)→ W (J ′φ)−
∫
ddxJφφ

Finally, our result from part (a) tells us that W is invariant under this transformation. Thus,

Γ(φ)→ W (Jφ)−
∫
ddxJφφ

But now we have to check our assumption, which is equivalent to defining J ′φ =
∫
ddzJφ(z)(R−1)ab(x, z).

Since we assumed that all the R’s have a delta function, the integrals cease to exist. Then,
our assumption is good only if

δW (J)

δJ ′(x)
?
= Rabφb

which implies
δW (J)

δJ(x)

δJ(x)

δJ ′(x)
?
= Rabφb

The first of these is given by equation 21.22; the second of these is given by our definion:

Rabφb
X
= Rabφb

which is obviously true.
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Note: Our assumption that the R’s have a delta function is of paramount importance. If
this delta function is missing, the entire argument is potentially invalid. Alternatively, the
derivation would work if the integrals in equations 21.22 and 21.23 were missing (that’s what
Srednicki proves in his solutions).

Srednicki 21.3. Consider performing the path integral in the presence of a back-
ground field φ̄(x); we define

exp[iW (J ; φ̄)] =

∫∫∫
Dφ exp

[
iS(φ+ φ̄) + i

∫∫∫
ddxJφ

]
Then W(J;0) is the original W(J) of equation 21.3. We also define the quantum
action in the presence of the background field,

Γ(φ; φ̄) = W (Jφ; φ̄)−
∫∫∫
ddxJφφ

where Jφ(x) is the solution of

δ

δJ(x)
W (J ; φ̄) = φ(x)

for a specified φ(x). Show that

Γ(φ; φ̄) = Γ(φ+ φ̄; 0)

where Γ(φ; 0) is the original quantum action of equation 21.1.

Proceeding directly:

Γ(φ+ φ̄; 0) = W (Jφ+φ̄; 0)−
∫
ddxJφ+φ̄(φ+ φ̄) (21.3.1)

Stuck already. To proceed, we have to know what Jφ+φ̄ is. Using the analog of equation
21.26, we see that Jφ+φ̄ is the solution of

δ

δJ(x)
W (Jφ+φ̄; 0) = φ(x) + φ̄(x) (21.3.2)

Again, to proceed we have to know what W (Jφ+φ̄; 0) is. To determine this, we go to equation
21.24:

exp[iW (J ; φ̄)] =

∫
Dφ exp

[
iS(φ+ φ̄) + i

∫
ddxJφ

]
Switching our integration variable to φ′ = φ+ φ̄, we have:

exp[iW (J ; φ̄)] =

∫
Dφ′ exp

[
iS(φ′) + i

∫
ddxJ(φ′ − φ̄)

]
which is:

exp[iW (J ; φ̄)] = e−i
∫
ddxJφ̄

∫
Dφ′ exp

[
iS(φ′) + i

∫
ddxJφ′

]
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which gives:

exp[iW (J ; φ̄)] = exp

[
iW (J ; 0)− i

∫
ddxJφ̄(x)

]
Simplifying this, we have:

W (J ; φ̄) = W (J ; 0)−
∫
ddxJφ̄(x) (21.3.3)

Next let’s take the functional derivative of this with respect to J, and use equation 21.26.
We find:

φ(x) =
δW (J ; 0)

δJ
− φ̄(x)

and so:
δW (J ; 0)

δJ
= φ(x) + φ̄(x)

Comparing this to equation (21.3.2), we see that Jφ = Jφ+φ̄. With this, we can go back to
equation (21.3.1):

Γ(φ+ φ̄; 0) = W (Jφ; 0)−
∫
ddxJφφ−

∫
ddxJφφ̄

Using equation (21.3.3):

Γ(φ+ φ̄; 0) = W (J ; φ̄)−
∫
ddxJφφ

which is, from equation 21.25:
Γ(φ+ φ̄; 0) = Γ(φ; φ̄)

as expected.
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