
Srednicki Chapter 20
QFT Problems & Solutions

A. George

October 24, 2013

Srednicki 20.1. Verify equation 20.17.

Using equation 20.7, 20.11, and the fact that m = 0 in this limit, our task is to evalu-
ate this integral:

3!

∫ 1

0

dx1

∫ 1−x1

0

dx2

∫ 1−x1−x2

0

dx3
1

x2(−sx1 + tx3) + (−x3t+ x1x3t+ x23t)

These are all dummy indices, so let’s swap x2 ↔ x3 in the integrand:

3!

∫ 1

0

dx1

∫ 1−x1

0

dx2

∫ 1−x1−x2

0

dx3
1

x3(−sx1 + tx2) + (−x2t+ x1x2t+ x22t)

It is trivial that: ∫
dx

Ax+B
=

1

A
ln(Ax+B)

So we solve this integral to find:

3!

∫ 1

0

dx1

∫ 1−x1

0

dx2
{

ln
[
(1− x1 − x2)(−sx1 + tx2) + (−x2t+ x1x2t+ x22t)

]
− ln

[
(−x2t+ x1x2t+ x22t)

]}
Using properties of the logarithm to simplify this, we find that:

3!

∫ 1

0

dx1

∫ 1−x1

0

dx2
ln s+ lnx1 − ln t− lnx2

tx2 − sx1

If we let u = tx2 − sx1, we have:

3!

t

∫ 1

0

dx1

∫ x2=1−x1

x2=0

du

{
ln
(
sx1
t

)
u

−
ln
(
u+sx1
t

)
u

}

Let’s notice that the denominators in both logarithms cancel (using properties of the loga-
rithm). Then,

3!

t

∫ 1

0

dx1

∫ x2=1−x1

x2=0

du

{
ln(sx1)

u
− ln(u+ sx1)

u

}
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This first integral is easy to evaluate:

3!

t

∫ 1

0

dx1

{
ln(sx1) ln

(
t+ s

s
− t

sx1

)
−
∫ x2=1−x1

x2=0

du
ln(u+ sx1)

u

}
(20.1.1)

The second integral needs to be evaluated on Mathematica and simplified by hand; we find
that: ∫

du
ln(u+ sx1)

u
= ln(u) ln(sx1)− Polylog2

(
− u

sx1

)
Now let’s go back to x2 so we can apply the endpoints:∫

du
ln(u+ sx1)

u
= ln(tx2 − sx1) ln(sx1)− Polylog2

(
−tx2 − sx1

sx1

)
And applying the endpoints:∫ x2=1−x1

x2=0

du
ln(u+ sx1)

u
= ln(t(1− x1)− sx1) ln(sx1)− Polylog2

(
−t(1− x1)− sx1

sx1

)

− ln(−sx1) ln(sx1) + Polylog2

(
−−sx1
sx1

)
Simplifying, and using the definition of the polylogarithm in the last term, we find:∫ x2=1−x1

x2=0

du
ln(u+ sx1)

u
= ln

(
t(1− x1)− sx1

−sx1

)
ln(sx1)−Polylog2

(
−t(1− x1)− sx1

sx1

)
+
π2

6

which is:∫ x2=1−x1

x2=0

du
ln(u+ sx1)

u
= ln

(
t+ s

s
− t

sx1

)
ln(sx1)− Polylog2

(
t+ s

s
− t

sx1

)
+
π2

6

Using this in equation (20.1.1):

3!

t

∫ 1

0

dx1Polylog2

(
t+ s

s
− t

sx1

)
− π2

t
(20.1.2)

Now let’s redefine some things for simplicity. We’ll take x1 → x, A = 1 + t
s
, and B = t

s
.

We’ll also suppress the 3!/t, though it will be very important to add it in later. Finally, let’s
ignore the endpoints of the integral for now, defining the indefinite integral to be a function
instead. Then,

f(x) =

∫
dxPolylog2

(
A− B

x

)
This can be evaluated on Mathematica:

f(x) = xPolylog2

(
A− B

x

)
+
B

A

{
ln

(
1− A+

B

x

)
ln (B − Ax)

+ ln

(
B

1− A
+ x

)(
− ln (B − Ax) + ln

(
(A− 1)(Ax−B)

B

))
2



+ ln(x)

(
ln(B − Ax)− ln

(
1− Ax

B

))
− Polylog2

(
Ax

B

)
+ Polylog2

(
A(B + x− Ax)

B

)}
Using equation (20.1.2), our integral is equal to:

3!

t

[
f(1)− f(0)− π2

6

]
(20.1.3)

First let’s evaluate f(1):

f(1) = Polylog2 (A−B) +
B

A
{ln (1− A+B) ln (B − A)

+ ln

(
B

1− A
+ 1

)(
− ln (B − A) + ln

(
(A− 1)(A−B)

B

))
+ ln(1)

(
ln(B − A)− ln

(
1− A

B

))
− Polylog2

(
A

B

)
+ Polylog2

(
A(B + 1− A)

B

)}
It is easy to see (using properties of logs) that there are no infinities in the third-to-last term,
so ln(1) sets the entire term to zero:

f(1) = Polylog2 (A−B) +
B

A
{ln (1− A+B) ln (B − A)

+ ln

(
B − A+ 1

1− A

)(
− ln (B − A) + ln

(
(A− 1)(A−B)

B

))
−Polylog2

(
A

B

)
+ Polylog2

(
A(B + 1− A)

B

)}
Let’s distribute the terms on the second line:

f(1) = Polylog2 (A−B) +
B

A
{ln (1− A+B) ln (B − A)

− ln

(
1− A+B

1− A

)
ln (B − A) + ln

(
B − A+ 1

1− A

)
ln

(
(A− 1)(A−B)

B

)
−Polylog2

(
A

B

)
+ Polylog2

(
A(B + 1− A)

B

)}
Next, note that if we split the numerator from the denominator on the first term of the
second line, there is a cancellation. Hence:

f(1) = Polylog2 (A−B)+
B

A

{
ln (1− A) ln (B − A) + ln

(
B − A+ 1

1− A

)
ln

(
(A− 1)(A−B)

B

)

−Polylog2

(
A

B

)
+ Polylog2

(
A(B + 1− A)

B

)}
Now, note that A−B = 1. This lets us simplify many terms:

f(1) = Polylog2 (1) +
B

A

{
ln (1− A) ln (−1) + ln

(
B − A+ 1

1− A

)
ln

(
A− 1

B

)
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−Polylog2

(
A

B

)
+ Polylog2 (0)

}
This last term vanishes:

f(1) = Polylog2 (1)+
B

A

{
ln (1− A) ln (−1) + ln

(
B − A+ 1

1− A

)
ln

(
A− 1

B

)
− Polylog2

(
A

B

)}
Using the definition of the Polylog, we find the value of this first term:

f(1) =
π2

6
+
B

A

{
ln (1− A) ln (−1) + ln

(
B − A+ 1

1− A

)
ln

(
A− 1

B

)
− Polylog2

(
A

B

)}
Now let’s go back to the definition of f(x) to calculate f(0):

f(x) = xPolylog2

(
A− B

x

)
+
B

A

{
ln

(
1− A+

B

x

)
ln (B − Ax)

+ ln

(
B

1− A
+ x

)(
− ln (B − Ax) + ln

(
(A− 1)(Ax−B)

B

))
+ ln(x)

(
ln(B − Ax)− ln

(
1− Ax

B

))
− Polylog2

(
Ax

B

)
+ Polylog2

(
A(B + x− Ax)

B

)}
The first term vanishes as x → 0. The easiest way to verify this is to try a few values on
Mathematica, or check the graph. It also makes sense conceptually, since the polylog is in
some sense a “heavy-duty logarithm”, which will grow much slower than x shrinks. Let’s
plug in 0 where possible on the other terms, leaving the terms that appear to diverge as x
for the moment:

f(0) =
B

A

{
ln

(
1− A+

B

x

)
ln (B) + ln

(
B

1− A

)
(− ln (B) + ln (1− A))

+ ln(x) (ln(B)− ln (1))− Polylog2 (0) + Polylog2 (A)}

We know that Polylog2(0) = 0. We can also combine the two added logarithms on the first
line. This gives:

f(0) =
B

A

{
ln

(
1− A+

B

x

)
ln (B) + ln

(
B

1− A

)
ln

(
1− A
B

)
+ ln(x) ln(B) + Polylog2 (A)}

The third and first terms can now be combined, using the properties of logarithms:

f(0) =
B

A

{
ln (x− Ax+B) ln (B) + ln

(
B

1− A

)
ln

(
1− A
B

)
+ Polylog2 (A)

}
Setting the last remaining xs to 0, we have:

f(0) =
B

A

{
ln (B) ln (B) + ln

(
B

1− A

)
ln

(
1− A
B

)
+ Polylog2 (A)

}
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Now we’re ready to combine these:

f(1)− f(0) =
π2

6
+
B

A

{
ln (1− A) ln (−1) + ln

(
B − A+ 1

1− A

)
ln

(
A− 1

B

)
− Polylog2

(
A

B

)

− ln (B) ln (B)− ln

(
B

1− A

)
ln

(
1− A
B

)
− Polylog2 (A)

}
Let’s separate the denominator in the second term inside the braces:

f(1)− f(0) =
π2

6
+
B

A

{
ln (1− A) ln (−1) + ln (B − A+ 1) ln

(
A− 1

B

)

− ln (1− A) ln

(
A− 1

B

)
− Polylog2

(
A

B

)
− ln (B) ln (B)− ln

(
B

1− A

)
ln

(
1− A
B

)
−Polylog2 (A)}

Combining the first and third terms:

f(1)− f(0) =
π2

6
+
B

A

{
− ln (1− A) ln

(
1− A
B

)
+ ln (B − A+ 1) ln

(
A− 1

B

)

−Polylog2

(
A

B

)
− ln (B) ln (B)− ln

(
B

1− A

)
ln

(
1− A
B

)
− Polylog2 (A)

}
Combining the first and fifth terms:

f(1)− f(0) =
π2

6
+
B

A

{
− ln(B) ln

(
1− A
B

)
+ ln (B − A+ 1) ln

(
A− 1

B

)

−Polylog2

(
A

B

)
− ln (B) ln (B)− Polylog2 (A)

}
Combining the first and fourth terms:

f(1)− f(0) =
π2

6
+
B

A

{
− ln(B) ln(1− A) + ln (B − A+ 1) ln

(
A− 1

B

)

−Polylog2

(
A

B

)
− Polylog2 (A)

}
1− A = −B, so the first term becomes:

f(1)− f(0) =
π2

6
+
B

A

{
− ln(B) ln(−B) + ln (B − A+ 1) ln

(
A− 1

B

)

−Polylog2

(
A

B

)
− Polylog2 (A)

}
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The second term has two components multiplied together: the first forces the function toward
−∞, the other toward 0. Using L’hôpital’s rule (or another means), we see that this vanishes.
Then,

f(1)− f(0) =
π2

6
+
B

A

{
− ln(B) ln(−B)− Polylog2

(
A

B

)
− Polylog2 (A)

}
Using this in (20.1.3), the value of the integral is:

6B

At

{
− ln(B) ln(−B)− Polylog2

(
A

B

)
− Polylog2 (A)

}
B/A = t/(s+ t), so:

− 6

s+ t

{
ln

(
t

s

)
ln

(
− t
s

)
+ Polylog2

(
s+ t

t

)
+ Polylog2

(
s+ t

s

)}
which implies:

− 6

s+ t

{
ln
(s
t

)2
− iπ ln

(s
t

)
+ Polylog2

(
s+ t

t

)
+ Polylog2

(
s+ t

s

)}
Now we need to use an identity, which holds when x < 0.

π2 = −2iπ ln(x) + 2PolyLog2(1 + 1/x) + 2PolyLog2(1 + x) + ln(x)2

I can’t find a statement of this identity anywhere. Mathematically proving this identity
ourselves would be very difficult, but fortunately we’re not mathematicians. We’re convinced
if we just look at a graph of the right hand side:

-100 -50 50 100

-60

-50

-40

-30

-20

-10

10

where the blue is the real part and the purple is the imaginary part. Indeed, the identity
appears to be true for x < 0. Using this in our expression, with x = s/t, we obtain equation
20.17: ∫

dF4

D4(s, t)
= − 3

s+ t

(
π2 + [ln(s/t)]2

)
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Note: Srednicki’s solution presents an easier way to derive this. Curiously enough, by com-
paring his answer with my answer, we are able to mathematically prove the identity I stated
above (since our answers are equivalent if and only if the identity is true). I presented this
solution instead, because I think it is unlikely that the “trick” Srednicki used would be obvious
to a student without further help. Of course, I have had to pay dearly for this rectitude – my
solution is much more complicated than Srednicki’s!

Note 2: Again, I’m unsure what the point of this problem was. Calculus practice? It is
useful to practice Feynman’s Formula – and the introduction to polylogarithms was certainly
interesting – but this seems like a very difficult problem with very little purpose. Perhaps
some leading hints could have at least allowed us to spend much less time on this problem.

Srednicki 20.2. Compute the O(α) correction to the two-particle scattering am-
plitude at threshold, that is, for s = 4m2 and t = u = 0, corresponding to zero
three-momentum for both the incoming and outgoing particles.

All we have to do is evaluate some unpleasant integrals. Let’s start with V3(0):

V3(0) = g − gα2!

2

∫ 1

0

dx1

∫ 1−x1

0

dx2 ln [1− (x1 + x2)(1− x1 − x2)]

We can rewrite this as:

V3(0) = g − gα
∫ 1

0

dx1

∫ 1−x1

0

dx2 ln
[
x22 + (2x1 − 1)x2 + (1− x1 + x21)

]
This integral is an absolute mess, but after doing a lot of simplification, and using Mathe-
matica, we find that:

V3(0) = g − gα
∫ 1

0

dx

[
−2 + 2x+

π
√

3

6
−
√

3tan−1
(

2x− 1√
3

)
−
(
x− 1

2

)
ln
(
1− x1 + x21

)]

Putting this on Mathematica, we find:

V3(0) = g + gα

(
1− π

√
3

6

)

Next we’ll do V3(4m
2). Notice that the only difference is an extra term of −4x1x2m

2. Then,

V3(4m
2) = g − gα

∫ 1

0

dx1

∫ 1−x1

0

dx2 ln
[
x22 + (−2x1 − 1)x2 + (1− x1 + x21)

]
Again, after integrating and doing a lot of simplification, we’re left with:

V3(4m
2) = g − gα

∫ 1

0

dx

[
−2 + 2x+

√
3− 8x

{
tan−1

(
1 + 2x√
3− 8x

)
− tan−1

(
4x− 1√
3− 8x

)}
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+
1− 4x

2
ln
(
1− 4x+ 4x2

)
+

1 + 2x

2
ln
(
1− x+ x2

)]
Putting this on Mathematica, we find

V3(4m
2) = g + gα

(
8− π

√
3

6

)

The four-point vertex function is given by:

V4(4m
2, 0, 0) =

g2α

m2

∫ 1

0

dx1

∫ 1−x1

0

dx2

∫ 1−x1−x2

0

dx3

{
1

−4x1x2 + 1− (x1 + x2)(1− x1 − x2)

+
1

1− (x1 + x2)(1− x1 − x2)
+

1

−4x3(1− x1 − x2 − x3) + 1− (x1 + x2)(1− x1 − x2)

}
It is best to do this on Mathematica; the result is:

V4(4m
2, 0, 0) =

g2α

m2

(
−1

3
− 5π

√
3

18

)

Note: In an earlier version of this solution, I had a Mathematica workbook that replicated
Srednicki’s solution (though the answer did not seem intuitive). A year later, I received an
e-mail from a reader who had typed in exactly the same thing, and gotten a different (but
more intuitive) result to the first integral, resulting in a slightly different answer. I ended
up reproducing his result, though I see no reason for the discrepency. Maybe Mathematica
was updated, and the bug was fixed? In any case, please see the attached workbook, updated,
for a derivation of this answer – note that it does slightly disagree with Srednicki’s solution.
Thanks to Augusto Medeiros (Washington University in St Louis) for bringing this to my
attention.

The self-energy at zero is given by:

Π(0) = −αm
2

2

{∫ 1

0

dx ln
(
1− x+ x2

)
+

1

6

}
Using Mathematica:

Π(0) =
αm2

2

[
11

6
− π√

3

]
which gives:

∆̃(0) =
1

m2 − αm2

2

[
11
6
− π√

3

]
Simplifying, and expanding the denominator to first order in α, we have:

∆̃(0) =
1

m2

[
1 + α

(
11− 2π

√
3

12

)]

8



Finally, the self-energy at −4m2 is given by:

Π(−4m2) =
α

2

∫ 1

0

dx(4x2 − 4x+ 1) ln

(
4x2 − 4x+ 1

x2 − x+ 1

)
− α

12
3m2

Doing the integral and simplifying, we find that:

αm2

12

(
2
√

3π − 9
)

which gives:

∆̃(−4m2) = − 1

3m2

 1

1 + α
[
2
√
3π

36
− 1

4

]


Expanding to first order in α:

∆̃(−4m2) = − 1

3m2

(
1 + α

[
1

4
− 2
√

3π

36

])

Now we’re ready to combine these using equation 20.2:

τ1−loop = −1

3

g2

m2
+

g2α

108m2
(14
√

3π − 105) + 2
g2

m2
+ g2α

35− 6
√

3π

6m2
+
g2α

m2

(
−1

3
− 5π

√
3

18

)

Simplifying:

τ1−loop = g2

108m2

[
180 + α(489− 124

√
3π)
]

As a fun fact, we can write this as:

τ1−loop =
180g2

108m2

[
1 +

α(489− 124
√

3π)

180

]
≈ 180g2

108m2

(
1− 0.000519g2

)
showing that these one-order corrections have an absolutely tiny impact on the overall scat-
tering amplitude. In light of this, our decision to neglect all terms higher than O(α) seems
extremely reasonable.

Note: David Griffiths once wrote a problem prefaced by the comment “for masochists only.”
Srednicki would do well to add such a disclaimer to this problem.
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In[3]:= Integrate@1 � H-4 * x1 * x2 + 1 - Hx1 + x2L * H1 - x1 - x2LL + 1 � H1 - Hx1 + x2L * H1 - x1 - x2LL +

1 � H-4 * x3 * H1 - x1 - x2 - x3L + 1 - Hx1 + x2L H1 - x1 - x2LL, 8x3, 0, 1 - x1 - x2<D

Out[3]= ConditionalExpressionB

-
-1 + x1 + x2

1 + H-1 + x1 + x2L Hx1 + x2L -
-1 + x1 + x2

1 + x1
2

+ H-1 + x2L x2 - x1 H1 + 2 x2L +

ArcTanB 1-x1-x2

x1+x2

F
x1 + x2

,

ImB x1 + x2

-1 + x1 + x2

F > 1 ÈÈ ImB x1 + x2

-1 + x1 + x2

F < -1 ÈÈ ReB x1 + x2

-1 + x1 + x2

F ¹ 0 &&

-1 + x1 - -x1 - x2 + x2

-1 + x1 + x2

Ï Reals ÈÈ ReB -1 + x1 - -x1 - x2 + x2

-1 + x1 + x2

F > 2 ÈÈ

ReB -1 + x1 - -x1 - x2 + x2

-1 + x1 + x2

F < 0 &&

-1 + x1 + -x1 - x2 + x2

-1 + x1 + x2

Ï Reals ÈÈ

ReB -1 + x1 + -x1 - x2 + x2

-1 + x1 + x2

F > 2 ÈÈ ReB -1 + x1 + -x1 - x2 + x2

-1 + x1 + x2

F < 0 F

In[14]:= Integrate@-HH-1 + x1 + x2L � H1 + H-1 + x1 + x2L Hx1 + x2LLL -

H-1 + x1 + x2L � H1 + x1^2 + H-1 + x2L x2 - x1 H1 + 2 x2LL +

ArcTan@H1 - x1 - x2L � Sqrt@x1 + x2DD � Sqrt@x1 + x2D, x2D

Out[14]= 3 ArcTanB 3

1 - 2 x1 - 2 x2

F -

ArcTanB 1-2 x1-2 x2

3

F
3

-

ArcTanB 1+2 x1-2 x2

3-8 x1

F
3 - 8 x1

+

4 x1 ArcTanB 1+2 x1-2 x2

3-8 x1

F
3 - 8 x1

+

2 x1 + x2 ArcTanB1 - x1 - x2

x1 + x2

F -
1

2

LogA1 - x1 + x1
2

- x2 - 2 x1 x2 + x2
2E

In[16]:= F@x1_, x2_D :=

Sqrt@3D ArcTan@Sqrt@3D � H1 - 2 x1 - 2 x2LD - ArcTan@H1 - 2 x1 - 2 x2L � Sqrt@3DD � Sqrt@3D -

ArcTan@H1 + 2 x1 - 2 x2L � Sqrt@3 - 8 x1DD � Sqrt@3 - 8 x1D +

H4 x1 ArcTan@H1 + 2 x1 - 2 x2L � Sqrt@3 - 8 x1DDL � Sqrt@3 - 8 x1D +

2 Sqrt@x1 + x2D ArcTan@H1 - x1 - x2L � Sqrt@x1 + x2DD -

1 � 2 Log@1 - x1 + x1^2 - x2 - 2 x1 x2 + x2^2D



In[17]:= F@x1, 1 - x1D - F@x1, 0D

Out[17]= - 3 ArcTanB 3

1 - 2 x1

F +

ArcTanB 1-2 x1

3

F
3

+ 3 ArcTanB 3

1 - 2 H1 - x1L - 2 x1

F -

ArcTanB 1-2 H1-x1L-2 x1

3

F
3

- 2 x1 ArcTanB1 - x1

x1

F +

ArcTanB 1+2 x1

3-8 x1

F
3 - 8 x1

-

4 x1 ArcTanB 1+2 x1

3-8 x1

F
3 - 8 x1

-

ArcTanB 1-2 H1-x1L+2 x1

3-8 x1

F
3 - 8 x1

+

4 x1 ArcTanB 1-2 H1-x1L+2 x1

3-8 x1

F
3 - 8 x1

+

1

2

LogA1 - x1 + x1
2E -

1

2

LogAH1 - x1L2
- 2 H1 - x1L x1 + x1

2E

In[18]:= FullSimplify@%D

Out[18]=

1

18 3 - 8 x1

-5 Π 9 - 24 x1 + 18 9 - 24 x1 ArcCotB -1 + 2 x1

3

F + 36 3 - 8 x1 x1 ArcTanB -1 + x1

x1

F -

18 H-1 + 4 x1L ArcTanB 1 + 2 x1

3 - 8 x1

F - ArcTanB -1 + 4 x1

3 - 8 x1

F -

3 3 - 8 x1 2 3 ArcTanB -1 + 2 x1

3

F + 3 LogAH1 - 2 x1L2E - 3 Log@1 + H-1 + x1L x1D

In[19]:= Integrate@H1 � H18 Sqrt@3 - 8 x1DLL
H-5 Π Sqrt@9 - 24 x1D + 18 Sqrt@9 - 24 x1D ArcCot@H-1 + 2 x1L � Sqrt@3DD +

36 Sqrt@3 - 8 x1D Sqrt@x1D ArcTan@H-1 + x1L � Sqrt@x1DD - 18 H-1 + 4 x1L
HArcTan@H1 + 2 x1L � Sqrt@3 - 8 x1DD - ArcTan@H-1 + 4 x1L � Sqrt@3 - 8 x1DDL -

3 Sqrt@3 - 8 x1D H2 Sqrt@3D ArcTan@H-1 + 2 x1L � Sqrt@3DD +

3 Log@H1 - 2 x1L^2D - 3 Log@1 + H-1 + x1L x1DLL, 8x1, 0, 1<D

Out[19]=

1

18

J-6 - 5 3 ΠN

2     Sred_20_2.nb


