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Srednicki 2.1. Prove that dw,, (the first-order term of the infinitesimal Lorentz
matrix) is antisymmetric.

Start with the definition of the Lorentz Matrix:
G N AT = g,
Use Srednicki 2.7, the infinitesmal form of the Lorentz Matrix,
G (08, + 0wk ) (0%, + 0wh)) = Gpo
Expanding, and throwing away the term with more than one differential:
Gu0",0" + Guow*,0%, + g 0", 0w", = gpo

Using these deltas:
9po + g,wdw“p + G OW” = Gpo
which gives:

0Wpr = —0Wgp

Srednicki 2.2. Prove that 2.14 follows from U(A)"'U(A)U(A) = U(A1A’A)

Starting from the assumption:
UNTTUNYUA) =UAN AN

Let A =1+,
UN)TU(1+ 6wU(A) = UATA + A715W'A)

which implies:

UMNUL +6)UN) = U(L +A15W'A)
Now we can use 2.12 on both sides (we’ll drop the prime on the w):

i

S 0w, MU (R) = 1 + L (ALSwA) . M

UN)HI + oF

The identity terms cancel, so do the constants. Further, we’ll write the term on the right in
index notation:

U(A) ™ (B M™)U (A) = (A7) J0wgq (A)7, M



On the left, we note that dw,, is just a number, so it will commute with the operator. On
the right, we’ll use Srednicki 2.5 to deal with the inverse.

8w, U (M) MU (A) = Swgy A%, (A)7, M*

Now we’ll use the argument in Srednicki’s book: dw is arbitrary. Therefore, its coefficients
have to be the same at all times. But, the restriction is loosened a bit since M is antisym-
metric. Thus, only the antisymmetric parts of the coefficients must be equal — the symmetric
parts of the coefficients will go to zero when multiplied by M.

In this case, both the coefficients are completely antisymmetric, so we can equate them:
-1 v __AB o v
U(A)" M™U(A) = A7, (M), M*
as expected.

Srednicki 2.3. Verify that equation 2.16 follows from equation 2.14.

Equation 2.14 is:
UNTM™U(A) = AP MP?

Now let A =1+ dw.
U(1 = 0w)M" U(1 + w) = (1 + dw)" (1 + dw)", M
On the right hand side, we’ll expand this and throw away anything higher than first order:
U(1 = 0w)M"™ U (1 + 6w) = M" + dw", M + dwh M™”

On the left hand side, we’ll use 2.12:
(I - %&uvaé) M (] + %&Ua,@MQB) = M" + ow", M"? + dw", M""

We again expand the left hand side and throw away anything higher than first order:
i

M
2h

s M MM 4 MM Gy MO = M 4 6y MV 4 S0t M

Cancel the first term on each side. Let’s also use o and (8 universally for our dummy variables
—ﬁéwaﬁMo‘ﬁM“” + M“”%éwaﬁMOﬁ = dw" M"* + dw!, M

Finally, we’ll insert some metrics as needed:
—%&UMM"‘BMW + M““%éwaﬁMaﬁ = " 0waa MM + g"PSwpa M

In the third term, we’ll reverse dw’s indices, remembering that it is antisymmetric. In the
fourth term, we’ll simply switch the indices (for free):

i

o7 Owap MO M™ + MW%(S%BMW = —g"PSwas MM + g Swag M
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Let’s write some new terms on the right hand side. In these new terms, we switched the
dummy indices (which is free), but then switched back dw, which cost a minus sign.

—%maﬁMaﬁMﬂ”JrMW%awaﬁMaﬁ 0P B M4 G Sty M+ g7 50 s MM — g8 S0 s MOV

Now we remember that dw is an arbitrary antisymmetric function, so the antisymmetric
parts of its coefficients must be equal. In this case, the entire coefficient is antisymmetric,
so we can equate them.

_% MB v + M % MP — — gVB MHe 4 ghe MPVY + g"° MHB — guﬁ M

This left hand side cleans up. We’ll also multiply through by a minus sign:
1

% [MIW’ Maﬁ} — gVBlec _ glwaBV _ gvocMuﬁ + guBMOW

7

Finally, we use the fact that g is symmetric and M is antisymmetric to get the form that we

want:
[M/W’ Maﬁ] —ih (guaMVﬁ _ gvaMuB + gl/ﬂMW _ guﬁMva)

which is equation 2.16.
Srednicki 2.4. Derive the commutation relations for P and J.

Using the definition of the angular momentum, J; = 3*M7* hence:

J1:1M23—1M32:M23
2 2

Therefore:
[{]17 J2] — |:M23,M31:|
[Jl, J2] — [M237M31}
Using Srednicki 2.16 (which we proved in the previous problem):
7Y, J?] = ik <g23M31 —gBM 4 P g21M33)

Using the metric:
[JY, J?) = —ihM*

[JY, J?] = ihM ™
Hence:
[JY, J?] = ihJ?
[J2, JY = —inJ?

Now, let’s redefine our axes: J' — J?, J?> — J3, J* — J'. Alternatively, we can define:
JV— 3, J* — JY JP — J?. Also, [J', J'] obviously equals zero. Summarizing these results:

[J¢, J7] = ihe'k J*

This trick is called “taking cyclic permutations” and will be a standard workhorse of this
course. 0



Now let’s consider:
[JI’KQ] — [M23, M20:|

Using Srednicki 2.16 again:
(7Y, K?] = ih (g22M30 ~gBM 4 PO g20M32)

The result is:
[Jl,Kz] = ih M3 = ih K3

Using cyclic permutations:
[J¢, K9] = ihe'* Kk

Finally, we consider:
[Kl,KQ] — [MIO,MQO]

[[(17 K?] —ih (g12M00 - 902M10 + gOOM12 - 910M02)
[K', K?] = —ihM*?
[K', K% = —ihJ?

Taking cyclic permutations: o -
[K', K9] = —ihe'k J*

Srednicki 2.5. Verify that eq. 2.18 follows from eq. 2.15

Equation 2.15 is:
U(AN)'PFU(A) = A* PY

Now let A =1 + dw:
U(l - dw)PrU(1 + dw) = P* + ow! P”

Using equation 2.12:

_i af H L aB | — pu w pv
(1 2h5waﬂM )P 1+2h5wa5]\/[ PF 4wt P

P!+ %5%/3 (P*M*? — M PH) = P* + jw", P¥
dWas [P“, Maﬂ} = 22—,hg”a(5wa,,P”
Change the dummy variable v to 8 on the right hand side:
Swag [P, Maﬂ} = ijg”adwa[gPﬁ
Now let’s write right-hand side as two terms. In the second term, we’ll switch a <> 3:

5&)@5 [P“,MQB] = % (g’“éwagP’B + g“’B(SwgaPa)
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Now we’ll remember that dw is antisymmetric:

dWag [P“, Maﬁ} = ? (g“O‘(SwagPﬁ — g“ﬁ&uagpo‘)

dWag [P“,MO‘B} = ?&uaﬁ (g“aPﬁ — g“BPO‘)

Now we remember that dw is an arbitrary anti-symmetric function (where we mean anti-
symmetric under a <+ (). The anti-symmetric part of the coefficients must therefore be
equal (the symmetric coefficients, on the other hand, may be different, but the equality will
still hold because they go to zero when multiplied by the anti-symmetric dw). In this case,
both coefficients are manifestly anti-symmetric, so we can equate them:

[pu7 Maﬁ} — ; (guapﬁ _ guﬂpa)
Srednicki 2.6. Verify that eq. 2.19 follows from eq. 2.18
We'll go through these one by one. First, take:
[H, P, = [H, %MQ?’] = ihc(g®P? — g"P%) =0

where the last equality follows from equation 2.18. We can replace 1 with 2 or 3, there’s no

way for the right hand side to be anything other than zero. O]
Next we’ll consider: ) )
[J1, o] = [§M23 - §M32, Py

Remember that M is antisymmetric, so these terms combine. Now use 2.18:
[J1, o] = —ih(gas Py — goa P3)
[J1, Py] = ihPs

Taking cyclic permutations:
[Ji, Pj] = iheij Py
O

The third one seems simple enough that we’ll proceed directly, rather than relying on cyclic
permutations. We have:
[Kia H] = [Mi07 CPO] = _C[P07 M’LO]

Now use 2.18:
[Ki7 H] = —ihc (QOOPi - goZ‘Po)

i is a spatial variable (can’t have boost in time-time direction), so:

[K;, H] = ihcP,

Finally, we have:
[Kia Pg] = _[P%Mj(]] = —ih (giOPj - gijPO)
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Recalling that i is a Spatial variable, we have:
which proves eq. 2.19. [

Srednicki 2.7. What additional constraint should be added to the translation
operator, in order to prove equation 2.207

We should require that translations are additive; that is that 7'(a)T'(b) = T'(a + b). Hence,
it doesnt matter which order translations are performed in (including translations in time),
the result will be the same.

To see that this will allow us to prove equation 2.20, recall that momentum is the gen-
erator of translation:
ap

fo+a) = T(@) = eap (52) 1) = 1) + (%2 ) S0) + .

This was proved in the chapter summary; see also Griffiths’ Quantum book, problem 3.39.
From this, we see that the infinitesimal translation operator is simply iap/h.

Now we’ll imagine two infinitesimal translations in two different directions p and v. Ob-
viously

T(01 + d2) =T (02 + 01)
Using the additive property described previously:
T(61)T(d2) = T(02)T (1)
Now use the translation operator for infinitesimals:
(i@t 1) (ibps/ ) = (iaps /) (ibpri/1)

Canceling the constants, we have
PubPv = PvPpu

If these are both space directions, then [p;, p;] = 0. If one of them is a time direction, then
[H,p;] = 0. This proves equation 2.20.

Srednicki 2.8. (a) Let A =1+ éw in eq. 2.26 and show that
[6(x), M*] = L ¢(x)

where B
LI = — (x10” — x"O")

i
Equation 2.26 gives:

Taking A = 1 + dw as indicated gives:
(1 —dw)p(x)(1 + dw) = Pp(x — xdw)
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On the left, we’ll use equation 2.12; on the right, we’ll expand:

1

(1 B %%M“”) o) (1 * zhéwuuM“”) = §(x) — dwpua” ()

Multiplying these out, we get:

l

o(a) + o

Owpy ((x) MM — M"™ p(x)) = d(x) — dwpa” 0" d(x)
/1: v 12 v
%&UW (p(x)MH* — M"™ p(z)) = —dwx” 0" ¢(x)
which gives: .
i
2h
We're getting somewhere; the problem is that the coefficient of dw on the right side is not
symmetric or antisymmetric, so we will have difficulty killing the dw term. Let’s rewrite the

right hand side as two terms, where in the second we’ll swap the dummy indices:

dwp[p(x), MM = —dwx” 0" ¢(x)

h (Owx” 0 p(x) + dw,, 20" ¢(x))

?

Owu[¢(x), MH] =

Now in the second term, we’ll remember that dw is antisymmetric, so that we can factor it
out. We'll also multiply through the minus sign and factor out a ¢(x):

dwy[p(z), MM = g&uw (—a"o 4+ 2"0") ¢(x)

dw[d(x), MM = dw LoO(2)

Now, dw is an arbitrary anti-symmetric function, so the antisymmetric part of the coefficients
on both sides must be equal. In this case both sides have coefficients which are manifestly
anti-symmetric (antisymmetric in the same way that dw is, in this case, under p <> v), so:

[o(x), M"] = L(x)

as expected.
(b) Show that [[¢(x), M*], M*r°| = LI Lr7¢(x).

The key insight we need is that £ and M commute with one another. This is because
L is an operator acting on x, while M is an operator acting in Hilbert Space, and it cannot
be written as a function of x. With this fact, we can proceed directly. Using the result from

part (a):
(), M, MP?] = [L* ¢ (), MP?]

Using the properties of the commutator:
[[o(z), MM, MP?] = L [p(x), MP?] + p(x)[LH, MP7]

As discussed above, the second term vanishes. For the first, we again use our result from

part (a):
[[(x), M, MP?] = LI L7 §(x)
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as expected.
(c) Prove the Jacobi Identity: [[A, B],C|+[[B,C], Al +[[C, A], B] =0 .

This is a thrilling and insightful proof. We rewrite the left hand side as:
[AB,C]| — [BA,C]+ [BC, Al — [CB, A] + [CA, B] — [AC, B]
Now we use the property of the commutator to find:
A[B,C|+[A,C|B — B[A,C] — [B,C]A+ B[C, A] + |B, A|C
—C|[B,A] - [C,A|B+ C[A,B] + [C,B]A — A[C, B] — [A, B]C

None of these cancel, so we must expand further:
ABC —-ACB+ACB—-CAB—-BAC+ BCA—-BCA+CBA+BCA—BAC+ BAC - ABC
—CBA+CAB—-CAB+ACB+CAB—-CBA+CBA—-—BCA—-ACB+ABC—-ABC+BAC
These cancel in pairs, leaving zero.
(d) Use your results from parts (b) and (c) to show that

[0(x), MM, MP7]] = (LM LP7 = LP7LM) 6(x)
We have, rewriting slightly:

(o), [M", MP?]] = —[[M"", M"?], ¢(x)]
Now use the Jacobi Identity (part c):
[0(x), [M"*, MP?]] = [[M", ¢(2)], M| + [[¢(x), M™], MP?]
which becomes:
[(x), [M™, M| = =[[o(x), M"], MP?] + [[¢(x), MM], M*7]

Now we use the result from part (b), factor out a ¢ and we have:

[6(2), (M, M) = (L2 L7 — £7L7) ()
as expected.

(e) Simplify the right hand of equation 2.31 as much as possible.

Let’s start by recalling how index notation works. Consider:
(xh0")(xPO7) = atzPd" 07 + xH0° 0"
Now, what to do with the unevaluated derivative? Notice:

0 if wv#p
FaxP=¢ =1 if v=p=0 =g”° (2.8.1)
1 if v=p=1

8



because 0’z" = —%%ct = —1, whereas 0'z¢ = %x" = 1. Hence, our result is:
(xH0")(xP07) = aFaPd" 07 + xH0° g"? (2.8.2)
We proceed. The right-hand side of eq. 2.31 is:
(£, LP) () = —h* [(2"0” — 2V 0") (2P0° — 2°0°) — (2P0 — 270F) (x"0” — 2" 0")] o(x)
(LM, L) () = —h? [0 (2P07) — 20" (270°) — 2V 0" (xPD%) + 27O (27 0")
— xP0% (x"0”) + 2P0 (V") + 20 (21 0") — 20 (x" )] p(x)
Now we use equation (2.8.2) eight times:
(L, LP7)(x) = —h? [aFaPd" 07 + xt0° g"P — xta’ 0V 0P — xtOP g’ — x¥aPOMO°
—x¥0% g"* + "2 OH 0P + 0P gM? — 2P0V — 2P0 g°F + 2P ¥ I O
+aPo g% + x°xt0P0” + x° 0" g — a7V OPOH — a7 g™"] p(x)
Fortunately, the terms without g’s cancel, leaving:
(LM LP)p(z) = —h? [2107 g"P — xMOP g7 — 2" 07 g + 27 0P gHT — 2P g
+aPoH g% + 270" g™ — 270" g"P] P(x)
Grouping and factoring:
£, £7]0(x) =~ [g"(a"0° — 270") — g7 (240” — 20¥) — ("D — 27D
+9"7 (20 — 170")] ¢(x)
which is, after using the definition of £ and reordering a bit:
L9, L7]0() = ih [gPLYT — gL — L4 LY Ga)  (289)
which looks exactly like equation 2.16, only for the L’s.

(f) Use your results from part (e) to verify equation 2.16, up to the possibil-
ity of a term on the right hand side that commutes with ¢(x) and its derivatives.
(Such a term, called a central charge, in fact does not arise for the Lorentz Al-
gebra.)

Start with equation 2.31:
[¢(x), [M", MP?]} = [L", L] (x)

On the right, we’ll use equation (2.8.3); on the left, we’ll assume the form of 2.16, but we’ll
also add an arbitrary k so that we don’t assume the thing we’re trying to prove. Then:

R[G(x), g M7 — g"P MP7 + g% MM — gho MYP+ k] = [gMP LY — g"P L1 — g" L7 + g7 L) ()
which gives:
ih (g"1o(x), M™7] = g™ [p(x), M*] + g"[p(x), M| — g"7[¢(x), M"?] + [p(x), k])
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= (gL — gL — gL g L)
Now we simplify using equation 2.29:
ih (9" L o(x) — gL p(x) + g7 L o(x) — g"7 L7 p(x) + [d(x), K])
= [gMPLYT — gPP LM — ghT LY+ g7 LPP] ()

Most terms cancel, we're left with:

[¢(z),k] =0
Hence, k is no longer an arbitrary function, but an arbitrary function that commutes with
¢ and its derivatives. This of course is the central charge that was referred to previously,
and works out to be zero. By the way, we already know k£ = 0 due to problem 2.3, but that
proof relies upon the assumption that U(A™') = U(A)~!. Other sources will prove that the
central charge is zero without any troubling assumptions.

Srednicki 2.9. Let us write:

AP :50 _|_i

T T 21;1 6('0/!”(8%”)/)7

where B
(S4), = (85", — g"%)

are matrices which constitute the vector representation of the Lorentz genera-
tors.

(a) Let A =1+ éw in eq. 2.27 and show that
[0"¢(x), M| = L0 ¢(x) + (Sy)"07¢(x)
Let’s go to equation 2.27 as indicated:
UA) " 0"o(2)U(A) = 0"6(A™ ")
Let’s start by pulling a derivative out of the left hand side. This gives:
o [U(A) GV (A)] = 9 [p(A"2)]

Now we're ready to let A = 1+ dw. But we’ve already done this! Except for the presence of
the derivative, this is exactly the supposition we made at the outset of problem 2.8a; hence
we'll just quote the result (eq. 2.29), and insert the derivatives (if you didn’t do problem
2.8a, there’s nothing for it but to solve the problem now, adding a derivative to both sides

of each equation).
& [8(x), M) = 9L ()

We recall that M is an operator in Hilbert space and does not depend on x, so we may
assume that it commutes with 0*. Hence,

(0" (x), M) = 9" L ()

Now there are a few ways we could proceed, but I think it’s easiest to avoid logical fallicies
if we proceed by using the product rule. Then,

[0"p(), M) = L p(x) + (9"L) ()

10



The first term looks good, the second term will be simplified. But we need to remember
this rule of basic calculus: the 0" acts only on the L. If the derivative is able to commute
all the way through the L, it will act on the constant and give zero. It will never act on the
¢(x). This is just the product rule, but it’s easy to mix it up, especially if you try to deal
with commutators in the abstract.

In any case, we write out L:

040(a), M%) = L90"6(x) + (020" — 270%)) 6(x)

0" 6(x), M%) = L0 g(a) +

1

(0(c)0" = 9(2")0°) §(a)
Now we take the derivatives (using (2.8.1)) and we have:
00(2), M%) = L906(x) + (407 — ¢ o(a)
Now we’ll introduce a new index, let’s call it 7:
h
06(2), M) = L50"6(x) + ° (5% — g%#5%) 07 o(x)
which is:

[0 (x), M) = L2 ¢(x) + (S77),07 $(x)

as expected.

(b) Show that the matrices S{;/ have the same commutation relations as the
operators M*”. Hint: see the previous problem.

Srednicki’s hint is non-rigorous. In the last step, one has to assume that the commuta-
tor of Sy involves no terms that involve £ (and vice-versa). This is perhaps a reasonable
assumption, but the straightforward approach, though tedious, is rigorous.

So, the commutator of Sy is:

2

v (03 h 174 o g v « g
1S4, 53] = 55 | (SEu(S87)77 = (SEYL (5307
Using the definition of Sy (I'll suppress the left-hand side since nothing happens to it):

h2
2 ("6, — g"76%) (g6 — g775°%) — (g"°6%, — g6+ )(g°76"" — ¢"75°7)]

Expanding, using one 9, reordering, and grouping, gives:

2
72_2 [gou/ (g“/H55ﬁ _ gzsu(s%ﬁ) + gﬁl/ (g5M5’7a _ g’yu55a) + gau (géll(s'yﬁ . g'yz/(séﬁ) + g”ﬁ (gfyy(sga . g(;l,d,ya)}

which is: 5
=g ST+ g7 (ST g ST+ g (S
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Remember (or notice) that Sy is anti-symmetric. Hence:
3 av 4 v 0\ pax a o\v S\va
ih | =g (ST + g7 (S + g (S — g (5)

Now, the v and 6 markers aren’t very illuminating, so let’s suppress them. We’ll also reorder
and reinsert the left-hand side:

[t S0 = in |9y = g2 S — g sy 4 g™ st
which is the same relation as 2.16.

(c) For a rotation by an angle ¢ about the z axis, we have:

1 0 0 0

A — 0 cosf —sinf O
v 0 sinf cosf O

0 0 0 1

Show that
A = exp(—ifS3y?/h)

First we’ll work out S{?:
h
(S\l/Q)pT i (glp(SzT 92p51’r)

This works out to be:

0 0 0O

g12 _ E 0 0 10

V74l 0 -100

0 0 0O

For notational convenience, we’ll define

0O 0 0O
_teqz_ [0 0 10
A=7%=10 -1 0 0
0 0 0O

Now exp(—ifSi?/h) = e~%4, so we can expand in a Taylor Series:
1 1 1 1 1
94 _ 202 L343 a4 L5 s 6 46
et =1 9A+—2!9A —3!914 +—4!9A 5!0A +6!9A +...

Now, note that

0000
2_ | 0100
AT = 0010
0000
Hence, AA%? = — A, so we can simplify our expansion:

1 1 1 1 1
—0A _ 1 2 42 340 Loaagae  Los 6 42
e =1 HA—I——Q!QA +—3!9A —4!0A —5!0 A+—6!9A + ...
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1 1 1 1 1
—0A _ L3 L R R S 2
e —1+( 9+3!9 5!9 +...)A+(2!9 4!9 —1—6!9 ~|—...>A

e =1~ (sin 0)A + (1 — cos ) A
From which we plug in A and see:

0 0
cos 0 —sin 0
sin @ cos 6

0 0

e~ 10SV/h

o O O
_ o O O

as expected.

(d) For a boost by rapidity n in the z direction, we have:

coshn 0 0 sinhn
0 10 0
T
Al = 0 01 0
sinhn 0 0 coshnp

Show that
A = exp(inSY’ /h)

First we’ll work out S3°:
h

This works out to be:

0001

g30 _ h{ 0000

V7iloo0oo0o0

1000

For notational convenience, we’ll define

0001
_tao_ [ 0000
A=75=10 00 0
1000

Now exp(inSi®/h) = e, so we can expand in a Taylor Series:

1 1

1
677A:1+77A+5772A2+§773A3+

177

1
1A 5775A5 + ...

Now, note that

1000
, [000 0
A=10000

0001

Further, AA? = A, so we can simplify our expansion:

1 1 1 1
nA __ 2 2
e —1—|—A—|——2!A —|——3!A—|——4!A +—5!A+...
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3 .5 2 4

nA _ o Ton 2

e _1+<n+3!+5!+...)A+(2!+4!+... A
e =14 (sinh n)A + (cosh 1 — 1)A?

From which we plug in A and see:

coshn 0 0 sinhn
. 0 10 0
sinhm 0 0 coshn

as expected.
Problem 2.10. Prove that the Lorentz Group is a group.

Closure. Let’s assume that A’ and A” are Lorentz Matrices. We must prove that their
product is also in the group. In index notation, the product is: Af = A#A7Y. Now, we want
to consider the following:
)
GurMN = g AP ALTAY

These are in index notation, so we can move stuff around without worrying about commu-
tation relations.
Gu NG = g NFAY AN

Now A’ is in the group, so by the definition of the group:
GuNENG = gos AT
A" is also in the group, so we do this trick again:
gm,A’;AE = Yap
and so A is a member of the group, and therefore the group is closed. n

Inversion. We can rewrite the definition of the group:

Al/pAZ- = Gpo
Raise the p index on both sides:

AJAZ = g8
which is

APAL = 0F

On the other hand, by definition,
(AN, =0,

From which it follows that:
(A1), =AS

and so the inverse exists and is a member of the group. O
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Identity. The 4x4 identity matrix will do, we just have to show that it’s a member of
the group.

guuA#pAVg = guuéupé‘yg = Gpo
which is the definition of the group. Thus, the identity exists. O]

Association. The group’s operator is matrix multiplication, which is associative. O

Problem 2.11. Show that propriety and orthochronaity are subgroups of the
Lorentz Group.

It should be obvious that these are subsets of the Lorentz Group; it remains to show that
they are groups in their own right.

We've already proved that all Lorentz Group Members have inverses and an associative
operator. The proposed subgroups use the same operator as the groups themselves, so asso-
ciativity is fine.

Rewriting the inverse equation (Srednicki 2.5), we have: (A%)™' = A" = A7 g,59"*. Taking
the determinant of both sides shows that the inverse has the same determinant as the original

function. Taking the zero-zero component shows that A% will be the same for the original
A as well as its inverse. Hence, inverses are members of the subgroup.

The identity is the 4x4 identity matrix, which is proper and orthochronous. So the identity
is in the subgroup.

It remains to show closure. The product of two matrices with determinant 1 will have
determinant 1, and so propriety is closed.

The hard part of this problem is proving that orthochronality is closed. First, we note
that inverses will be included in the subgroup, so for any orthochronous Lorentz Matrix:

G (AN = gag

Now we use the definition of the inverse:

guVAaHAV,B = Gop
Playing with the indices, we can put this in the form:

a ApB _ af
A MA“ =g
From which it follows that:
AOHA;LO — gijOuA,uO — gOO ——

Further: ,
_AOOAOO + ZAOiAiO T

=0
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hence:
3

D TAYAO = —1 4 APAY < AN (2.11.1)
=1

Now let’s imagine the product of two orthochronous Lorentz Matrices:
A= AB

_ B8R«
A = g, A" B;

Hence:

3
AOO — AV0pg00 _ Z AV gi0
i=1
By the Schwartz Inequality (with the inner product of A and B defined such that its square
magnitude is given on the left side of the equation),

3 3 3
| ZAOiBiO|2 < Z ‘AOiAiO| Z |BOijO|
i=1 i=1 j=1

Using equation (2.11.1):

3
’ZAOiBi[)’Q < (AOO)Q(BOO)2
=1

Thus, in our definition for A9, the second term has less magnitude than the first term. Hence,
it follows that the second term cannot reverse the sign of the first term. Nor can it make
the sign zero, since we proved already that |Aj| > 1. Hence, the sign is completely deter-
mined by the first term, from which it is obvious that A will be orthochronous if A and B are.

As a fun fact, notice that if A and B are both non-orthochronous, then their product will
be orthochronous. This means that non-orthochronality is not closed, and is therefore not
a group (it’s also not a group because it has no identity). Conversely, if A is orthochronous
and B is not, then the product will be non-orthochronous (which proves nothing about the
group, but might be useful elsewhere).
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