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Srednicki 2.1. Prove that δωρσ (the first-order term of the infinitesimal Lorentz
matrix) is antisymmetric.

Start with the definition of the Lorentz Matrix:

gµνΛ
µ
ρΛ

ν
σ = gρσ

Use Srednicki 2.7, the infinitesmal form of the Lorentz Matrix,

gµν(δ
µ
ρ + δωµρ)(δ

ν
σ + δωµρ) = gρσ

Expanding, and throwing away the term with more than one differential:

gµνδ
µ
ρδ
ν
σ + gµνδω

µ
ρδ
ν
σ + gµνδ

µ
ρδω

ν
σ = gρσ

Using these deltas:
gρσ + gµσδω

µ
ρ + gρνδω

ν
σ = gρσ

which gives:
δωρσ = −δωσρ

Srednicki 2.2. Prove that 2.14 follows from U(Λ)−1U(Λ′)U(Λ) = U(Λ−1Λ′Λ)

Starting from the assumption:

U(Λ)−1U(Λ′)U(Λ) = U(Λ−1Λ′Λ)

Let Λ′ = 1 + δω′.
U(Λ)−1U(1 + δω′)U(Λ) = U(Λ−1Λ + Λ−1δω′Λ)

which implies:
U(Λ)−1U(1 + δω′)U(Λ) = U(1 + Λ−1δω′Λ)

Now we can use 2.12 on both sides (we’ll drop the prime on the ω):

U(Λ)−1(I +
i

2h̄
δωµνM

µν)U(Λ) = I +
i

2h̄
(Λ−1δωΛ)µνM

µν

The identity terms cancel, so do the constants. Further, we’ll write the term on the right in
index notation:

U(Λ)−1(δωµνM
µν)U(Λ) = (Λ−1) βµ δωβσ(Λ)σνM

µν
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On the left, we note that δωµν is just a number, so it will commute with the operator. On
the right, we’ll use Srednicki 2.5 to deal with the inverse.

δωµνU(Λ)−1MµνU(Λ) = δωβσΛβ
µ(Λ)σνM

µν

Now we’ll use the argument in Srednicki’s book: δω is arbitrary. Therefore, its coefficients
have to be the same at all times. But, the restriction is loosened a bit since M is antisym-
metric. Thus, only the antisymmetric parts of the coefficients must be equal – the symmetric
parts of the coefficients will go to zero when multiplied by M.

In this case, both the coefficients are completely antisymmetric, so we can equate them:

U(Λ)−1MµνU(Λ) = Λβ
µ(Λ)σνM

µν

as expected.

Srednicki 2.3. Verify that equation 2.16 follows from equation 2.14.

Equation 2.14 is:
U(Λ)−1MµνU(Λ) = Λµ

ρΛ
ν
σM

ρσ

Now let Λ = 1 + δω.

U(1− δω)MµνU(1 + δω) = (1 + δω)µρ(1 + δω)νσM
ρσ

On the right hand side, we’ll expand this and throw away anything higher than first order:

U(1− δω)MµνU(1 + δω) = Mµν + δωνσM
µσ + δωµρM

ρν

On the left hand side, we’ll use 2.12:(
I − i

2h̄
δωγδM

γδ

)
Mµν

(
I +

i

2h̄
δωαβM

αβ

)
= Mµν + δωνσM

µσ + δωµρM
ρν

We again expand the left hand side and throw away anything higher than first order:

Mµν − i

2h̄
δωγδM

γδMµν +Mµν i

2h̄
δωαβM

αβ = Mµν + δωνσM
µσ + δωµρM

ρν

Cancel the first term on each side. Let’s also use α and β universally for our dummy variables

− i

2h̄
δωαβM

αβMµν +Mµν i

2h̄
δωαβM

αβ = δωναM
µα + δωµαM

αν

Finally, we’ll insert some metrics as needed:

− i

2h̄
δωαβM

αβMµν +Mµν i

2h̄
δωαβM

αβ = gνβδωβαM
µα + gµβδωβαM

αν

In the third term, we’ll reverse δω’s indices, remembering that it is antisymmetric. In the
fourth term, we’ll simply switch the indices (for free):

− i

2h̄
δωαβM

αβMµν +Mµν i

2h̄
δωαβM

αβ = −gνβδωαβMµα + gµαδωαβM
βν
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Let’s write some new terms on the right hand side. In these new terms, we switched the
dummy indices (which is free), but then switched back δω, which cost a minus sign.

− i
h̄
δωαβM

αβMµν+Mµν i

h̄
δωαβM

αβ = −gνβδωαβMµα+gµαδωαβM
βν+gναδωαβM

µβ−gµβδωαβMαν

Now we remember that δω is an arbitrary antisymmetric function, so the antisymmetric
parts of its coefficients must be equal. In this case, the entire coefficient is antisymmetric,
so we can equate them.

− i
h̄
MαβMµν +Mµν i

2h̄
Mαβ = −gνβMµα + gµαMβν + gναMµβ − gµβMαν

This left hand side cleans up. We’ll also multiply through by a minus sign:

1

ih̄

[
Mµν ,Mαβ

]
= gνβMµα − gµαMβν − gναMµβ + gµβMαν

Finally, we use the fact that g is symmetric and M is antisymmetric to get the form that we
want: [

Mµν ,Mαβ
]

= ih̄
(
gµαMνβ − gναMµβ + gνβMµα − gµβMνα

)
which is equation 2.16.

Srednicki 2.4. Derive the commutation relations for P and J.

Using the definition of the angular momentum, Ji = 1
2
εijkM jk, hence:

J1 =
1

2
M23 − 1

2
M32 = M23

Therefore:
[J1, J2] =

[
M23,M31

]
[J1, J2] =

[
M23,M31

]
Using Srednicki 2.16 (which we proved in the previous problem):

[J1, J2] = ih̄
(
g23M31 − g33M21 + g31M23 − g21M33

)
Using the metric:

[J1, J2] = −ih̄M21

[J1, J2] = ih̄M12

Hence:
[J1, J2] = ih̄J3

[J2, J1] = −ih̄J3

Now, let’s redefine our axes: J1 → J2, J2 → J3, J3 → J1. Alternatively, we can define:
J1 → J3, J2 → J1, J3 → J2. Also, [J i, J i] obviously equals zero. Summarizing these results:

[J i, J j] = ih̄εijkJk

This trick is called “taking cyclic permutations” and will be a standard workhorse of this
course.
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Now let’s consider:
[J1, K2] =

[
M23,M20

]
Using Srednicki 2.16 again:

[J1, K2] = ih̄
(
g22M30 − g32M20 + g30M22 − g20M32

)
The result is:

[J1, K2] = ih̄M30 = ih̄K3

Using cyclic permutations:
[J i, Kj] = ih̄εijkKk

Finally, we consider:
[K1, K2] =

[
M10,M20

]
[K1, K2] = ih̄

(
g12M00 − g02M10 + g00M12 − g10M02

)
[K1, K2] = −ih̄M12

[K1, K2] = −ih̄J3

Taking cyclic permutations:
[Ki, Kj] = −ih̄εijkJk

Srednicki 2.5. Verify that eq. 2.18 follows from eq. 2.15

Equation 2.15 is:
U(Λ)−1P µU(Λ) = Λµ

νP
ν

Now let Λ = 1 + δω:
U(1− δω)P µU(1 + δω) = P µ + δωµνP

ν

Using equation 2.12:(
1− i

2h̄
δωαβM

αβ

)
P µ

(
1 +

i

2h̄
δωαβM

αβ

)
= P µ + δωµνP

ν

P µ +
i

2h̄
δωαβ

(
P µMαβ −MαβP µ

)
= P µ + δωµνP

ν

δωαβ
[
P µ,Mαβ

]
=

2h̄

i
gµαδωανP

ν

Change the dummy variable ν to β on the right hand side:

δωαβ
[
P µ,Mαβ

]
=

2h̄

i
gµαδωαβP

β

Now let’s write right-hand side as two terms. In the second term, we’ll switch α↔ β:

δωαβ
[
P µ,Mαβ

]
=
h̄

i

(
gµαδωαβP

β + gµβδωβαP
α
)
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Now we’ll remember that δω is antisymmetric:

δωαβ
[
P µ,Mαβ

]
=
h̄

i

(
gµαδωαβP

β − gµβδωαβPα
)

δωαβ
[
P µ,Mαβ

]
=
h̄

i
δωαβ

(
gµαP β − gµβPα

)
Now we remember that δω is an arbitrary anti-symmetric function (where we mean anti-
symmetric under α ↔ β). The anti-symmetric part of the coefficients must therefore be
equal (the symmetric coefficients, on the other hand, may be different, but the equality will
still hold because they go to zero when multiplied by the anti-symmetric δω). In this case,
both coefficients are manifestly anti-symmetric, so we can equate them:[

P µ,Mαβ
]

=
h̄

i

(
gµαP β − gµβPα

)
Srednicki 2.6. Verify that eq. 2.19 follows from eq. 2.18

We’ll go through these one by one. First, take:

[H,P1] = [H,
1

2
M23] = ih̄c(g03P 2 − g02P 3) = 0

where the last equality follows from equation 2.18. We can replace 1 with 2 or 3, there’s no
way for the right hand side to be anything other than zero.

Next we’ll consider:

[J1, P2] = [
1

2
M23 −

1

2
M32, P2]

Remember that M is antisymmetric, so these terms combine. Now use 2.18:

[J1, P2] = −ih̄(g23P2 − g22P3)

[J1, P2] = ih̄P3

Taking cyclic permutations:
[Ji, Pj] = ih̄εijkPk

The third one seems simple enough that we’ll proceed directly, rather than relying on cyclic
permutations. We have:

[Ki, H] = [Mi0, cP0] = −c[P0,Mi0]

Now use 2.18:
[Ki, H] = −ih̄c (g00Pi − g0iP0)

i is a spatial variable (can’t have boost in time-time direction), so:

[Ki, H] = ih̄cPi

Finally, we have:
[Ki, Pj] = −[Pi,Mj0] = −ih̄ (gi0Pj − gijP0)
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Recalling that i is a Spatial variable, we have:

[Ki, Pj] = ih̄δijP0 = ih̄δijH/c

which proves eq. 2.19.

Srednicki 2.7. What additional constraint should be added to the translation
operator, in order to prove equation 2.20?

We should require that translations are additive; that is that T (a)T (b) = T (a + b). Hence,
it doesnt matter which order translations are performed in (including translations in time),
the result will be the same.

To see that this will allow us to prove equation 2.20, recall that momentum is the gen-
erator of translation:

f(x+ a) = T (a)f(x) = exp

(
iap

h̄

)
f(x) = f(x) +

(
iap

h̄

)
f(x) + . . .

This was proved in the chapter summary; see also Griffiths’ Quantum book, problem 3.39.
From this, we see that the infinitesimal translation operator is simply iap/h̄.

Now we’ll imagine two infinitesimal translations in two different directions µ and ν. Ob-
viously

T (δ1 + δ2) = T (δ2 + δ1)

Using the additive property described previously:

T (δ1)T (δ2) = T (δ2)T (δ1)

Now use the translation operator for infinitesimals:

(iapmu/h̄)(ibpnu/h̄) = (iapnu/h̄)(ibpmu/h̄)

Canceling the constants, we have
pµpν = pνpµ

If these are both space directions, then [pi, pj] = 0. If one of them is a time direction, then
[H, pi] = 0. This proves equation 2.20.

Srednicki 2.8. (a) Let Λ = 1 + δω in eq. 2.26 and show that

[φ(x),Mµν ] = Lµνφ(x)

where

Lµν =
h̄

i
(xµ∂ν − xν∂µ)

Equation 2.26 gives:
U(Λ)−1φ(x)U(Λ) = φ(Λ−1x)

Taking Λ = 1 + δω as indicated gives:

(1− δω)φ(x)(1 + δω) = φ(x− xδω)
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On the left, we’ll use equation 2.12; on the right, we’ll expand:(
1− i

2h̄
δωµνM

µν

)
φ(x)

(
1 +

i

2h̄
δωµνM

µν

)
= φ(x)− δωµνxν∂µφ(x)

Multiplying these out, we get:

φ(x) +
i

2h̄
δωµν (φ(x)Mµν −Mµνφ(x)) = φ(x)− δωµνxν∂µφ(x)

i

2h̄
δωµν (φ(x)Mµν −Mµνφ(x)) = −δωµνxν∂µφ(x)

which gives:
i

2h̄
δωµν [φ(x),Mµν ] = −δωµνxν∂µφ(x)

We’re getting somewhere; the problem is that the coefficient of δω on the right side is not
symmetric or antisymmetric, so we will have difficulty killing the δω term. Let’s rewrite the
right hand side as two terms, where in the second we’ll swap the dummy indices:

δωµν [φ(x),Mµν ] = − h̄
i

(δωµνx
ν∂µφ(x) + δωνµx

µ∂νφ(x))

Now in the second term, we’ll remember that δω is antisymmetric, so that we can factor it
out. We’ll also multiply through the minus sign and factor out a φ(x):

δωµν [φ(x),Mµν ] =
h̄

i
δωµν (−xν∂µ + xµ∂ν)φ(x)

δωµν [φ(x),Mµν ] = δωµνLφ(x)

Now, δω is an arbitrary anti-symmetric function, so the antisymmetric part of the coefficients
on both sides must be equal. In this case both sides have coefficients which are manifestly
anti-symmetric (antisymmetric in the same way that δω is, in this case, under µ↔ ν), so:

[φ(x),Mµν ] = Lφ(x)

as expected.

(b) Show that [[φ(x),Mµν ],Mρσ] = LµνLρσφ(x).

The key insight we need is that L and M commute with one another. This is because
L is an operator acting on x, while M is an operator acting in Hilbert Space, and it cannot
be written as a function of x. With this fact, we can proceed directly. Using the result from
part (a):

[[φ(x),Mµν ],Mρσ] = [Lµνφ(x),Mρσ]

Using the properties of the commutator:

[[φ(x),Mµν ],Mρσ] = Lµν [φ(x),Mρσ] + φ(x)[Lµν ,Mρσ]

As discussed above, the second term vanishes. For the first, we again use our result from
part (a):

[[φ(x),Mµν ],Mρσ] = LµνLρσφ(x)
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as expected.

(c) Prove the Jacobi Identity: [[A,B], C] + [[B,C], A] + [[C,A], B] = 0 .

This is a thrilling and insightful proof. We rewrite the left hand side as:

[AB,C]− [BA,C] + [BC,A]− [CB,A] + [CA,B]− [AC,B]

Now we use the property of the commutator to find:

A[B,C] + [A,C]B −B[A,C]− [B,C]A+B[C,A] + [B,A]C

−C[B,A]− [C,A]B + C[A,B] + [C,B]A− A[C,B]− [A,B]C

None of these cancel, so we must expand further:

ABC−ACB+ACB−CAB−BAC+BCA−BCA+CBA+BCA−BAC+BAC−ABC

−CBA+CAB−CAB+ACB+CAB−CBA+CBA−BCA−ACB+ABC−ABC+BAC

These cancel in pairs, leaving zero.

(d) Use your results from parts (b) and (c) to show that

[φ(x), [Mµν ,Mρσ]] = (LµνLρσ − LρσLµν)φ(x)

We have, rewriting slightly:

[φ(x), [Mµν ,Mρσ]] = −[[Mµν ,Mρσ], φ(x)]

Now use the Jacobi Identity (part c):

[φ(x), [Mµν ,Mρσ]] = [[Mµν , φ(x)],Mρσ] + [[φ(x),Mµν ],Mρσ]

which becomes:

[φ(x), [Mµν ,Mρσ]] = −[[φ(x),Mµν ],Mρσ] + [[φ(x),Mµν ],Mρσ]

Now we use the result from part (b), factor out a φ and we have:

[φ(x), [Mµν ,Mρσ]] = (LµνLρσ − LρσLµν)φ(x)

as expected.

(e) Simplify the right hand of equation 2.31 as much as possible.

Let’s start by recalling how index notation works. Consider:

(xµ∂ν)(xρ∂σ) = xµxρ∂ν∂σ + xµ∂σ∂νxρ

Now, what to do with the unevaluated derivative? Notice:

∂νxρ =


0 if ν 6= ρ
−1 if ν = ρ = 0
1 if ν = ρ = 1

= gνρ (2.8.1)
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because ∂0x0 = −1
c
∂
∂t
ct = −1, whereas ∂ixi = ∂

∂xi
xi = 1. Hence, our result is:

(xµ∂ν)(xρ∂σ) = xµxρ∂ν∂σ + xµ∂σgνρ (2.8.2)

We proceed. The right-hand side of eq. 2.31 is:

[Lµν ,Lρσ]φ(x) = −h̄2 [(xµ∂ν − xν∂µ) (xρ∂σ − xσ∂ρ)− (xρ∂σ − xσ∂ρ) (xµ∂ν − xν∂µ)]φ(x)

[Lµν ,Lρσ]φ(x) = −h̄2 [xµ∂ν(xρ∂σ)− xµ∂ν(xσ∂ρ)− xν∂µ(xρ∂σ) + xν∂µ(xσ∂ρ)

− xρ∂σ(xµ∂ν) + xρ∂σ(xν∂µ) + xσ∂ρ(xµ∂ν)− xσ∂ρ(xν∂µ)]φ(x)

Now we use equation (2.8.2) eight times:

[Lµν ,Lρσ]φ(x) = −h̄2 [xµxρ∂ν∂σ + xµ∂σgνρ − xµxσ∂ν∂ρ − xµ∂ρgνσ − xνxρ∂µ∂σ

−xν∂σgµρ + xνxσ∂µ∂ρ + xν∂ρgµσ − xρxµ∂σ∂ν − xρ∂νgσµ + xρxν∂σ∂µ

+xρ∂µgσν + xσxµ∂ρ∂ν + xσ∂νgρµ − xσxν∂ρ∂µ − xσ∂µgρν ]φ(x)

Fortunately, the terms without g’s cancel, leaving:

[Lµν ,Lρσ]φ(x) = −h̄2 [xµ∂σgνρ − xµ∂ρgνσ − xν∂σgµρ + xν∂ρgµσ − xρ∂νgσµ

+xρ∂µgσν + xσ∂νgρµ − xσ∂µgνρ]φ(x)

Grouping and factoring:

[Lµν ,Lρσ]φ(x) = −h̄2 [gνρ(xµ∂σ − xσ∂µ)− gνσ(xµ∂ρ − xρ∂µ)− gµρ(xν∂σ − xσ∂ν)

+gµσ(xν∂ρ − xρ∂ν)]φ(x)

which is, after using the definition of L and reordering a bit:

[Lµν ,Lρσ]φ(x) = ih̄ [gµρLνσ − gνρLµσ − gµσLνρ + gνσLµρ]φ(x) (2.8.3)

which looks exactly like equation 2.16, only for the L’s.

(f) Use your results from part (e) to verify equation 2.16, up to the possibil-
ity of a term on the right hand side that commutes with φ(x) and its derivatives.
(Such a term, called a central charge, in fact does not arise for the Lorentz Al-
gebra.)

Start with equation 2.31:

[φ(x), [Mµν ,Mρσ]] = [Lµν ,Lρσ]φ(x)

On the right, we’ll use equation (2.8.3); on the left, we’ll assume the form of 2.16, but we’ll
also add an arbitrary k so that we don’t assume the thing we’re trying to prove. Then:

ih̄[φ(x), gµρMνσ−gνρMµσ+gνσMµρ−gµσMνρ+k] = [gµρLνσ−gνρLµσ−gµσLνρ+gνσLµρ]φ(x)

which gives:

ih̄ (gµρ[φ(x),Mνσ]− gνρ[φ(x),Mµσ] + gνσ[φ(x),Mµρ]− gµσ[φ(x),Mνρ] + [φ(x), k])
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= [gµρLνσ − gνρLµσ − gµσLνρ + gνσLµρ]φ(x)

Now we simplify using equation 2.29:

ih̄ (gµρLνσφ(x)− gνρLµσφ(x) + gνσLµρφ(x)− gµσLνρφ(x) + [φ(x), k])

= [gµρLνσ − gνρLµσ − gµσLνρ + gνσLµρ]φ(x)

Most terms cancel, we’re left with:
[φ(x), k] = 0

Hence, k is no longer an arbitrary function, but an arbitrary function that commutes with
φ and its derivatives. This of course is the central charge that was referred to previously,
and works out to be zero. By the way, we already know k = 0 due to problem 2.3, but that
proof relies upon the assumption that U(Λ−1) = U(Λ)−1. Other sources will prove that the
central charge is zero without any troubling assumptions.

Srednicki 2.9. Let us write:

Λρ
τ = δρτ +

i

2h̄
δωµν(S

µν
V )ρτ

where

(SµνV )ρτ =
h̄

i
(gµρδντ − gνρδµτ )

are matrices which constitute the vector representation of the Lorentz genera-
tors.

(a) Let Λ = 1 + δω in eq. 2.27 and show that

[∂µφ(x),Mµν ] = Lµν∂ρφ(x) + (SµνV )ρτ∂
τφ(x)

Let’s go to equation 2.27 as indicated:

U(Λ)−1∂µφ(x)U(Λ) = ∂µφ(Λ−1x)

Let’s start by pulling a derivative out of the left hand side. This gives:

∂µ
[
U(Λ)−1φ(x)U(Λ)

]
= ∂µ

[
φ(Λ−1x)

]
Now we’re ready to let Λ = 1 + δω. But we’ve already done this! Except for the presence of
the derivative, this is exactly the supposition we made at the outset of problem 2.8a; hence
we’ll just quote the result (eq. 2.29), and insert the derivatives (if you didn’t do problem
2.8a, there’s nothing for it but to solve the problem now, adding a derivative to both sides
of each equation).

∂µ[φ(x),Mαβ] = ∂µLαβφ(x)

We recall that M is an operator in Hilbert space and does not depend on x, so we may
assume that it commutes with ∂µ. Hence,

[∂µφ(x),Mαβ] = ∂µLαβφ(x)

Now there are a few ways we could proceed, but I think it’s easiest to avoid logical fallicies
if we proceed by using the product rule. Then,

[∂µφ(x),Mαβ] = Lαβ∂µφ(x) +
(
∂µLαβ

)
φ(x)
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The first term looks good, the second term will be simplified. But we need to remember
this rule of basic calculus: the ∂µ acts only on the L. If the derivative is able to commute
all the way through the L, it will act on the constant and give zero. It will never act on the
φ(x). This is just the product rule, but it’s easy to mix it up, especially if you try to deal
with commutators in the abstract.

In any case, we write out L:

[∂µφ(x),Mαβ] = Lαβ∂µφ(x) +
h̄

i

(
∂µ(xα∂β − xβ∂α)

)
φ(x)

[∂µφ(x),Mαβ] = Lαβ∂µφ(x) +
h̄

i

(
∂µ(xα)∂β − ∂µ(xβ)∂α

)
φ(x)

Now we take the derivatives (using (2.8.1)) and we have:

[∂µφ(x),Mαβ] = Lαβ∂µφ(x) +
h̄

i

(
gµα∂β − gµβ∂α

)
φ(x)

Now we’ll introduce a new index, let’s call it τ :

[∂µφ(x),Mαβ] = Lαβ∂µφ(x) +
h̄

i

(
gαµδβτ − gβµδατ

)
∂τφ(x)

which is:
[∂µφ(x),Mαβ] = Lαβ∂µφ(x) + (SαβV )µτ∂

τφ(x)

as expected.

(b) Show that the matrices SµνV have the same commutation relations as the
operators Mµν . Hint: see the previous problem.

Srednicki’s hint is non-rigorous. In the last step, one has to assume that the commuta-
tor of SV involves no terms that involve L (and vice-versa). This is perhaps a reasonable
assumption, but the straightforward approach, though tedious, is rigorous.

So, the commutator of SV is:

[SµνV , SαβV ] =
h̄2

i2

[
(SµνV )γσ(SαβV )σδ − (SµνV )δσ(SαβV )σγ

]
Using the definition of SV (I’ll suppress the left-hand side since nothing happens to it):

h̄2

i2
[
(gµγδνσ − gνγδµσ)(gασδβδ − gβσδαδ)− (gµδδνσ − gνδδµσ)(gασδβγ − gβσδαγ)

]
Expanding, using one δ, reordering, and grouping, gives:

h̄2

i2
[
gαν
(
gγµδδβ − gδµδγβ

)
+ gβν

(
gδµδγα − gγµδδα

)
+ gαµ

(
gδνδγβ − gγνδδβ

)
+ gµβ

(
gγνδδα − gδνδγα

)]
which is:

h̄

i

[
gαν(SγδV )µβ + gβν(SδγV )µα + gαµ(SδγV )νβ + gµβ(SγδV )να

]
11



Remember (or notice) that SV is anti-symmetric. Hence:

ih̄
[
−gαν(SγδV )µβ + gβν(SγδV )µα + gαµ(SγδV )νβ − gµβ(SγδV )να

]
Now, the γ and δ markers aren’t very illuminating, so let’s suppress them. We’ll also reorder
and reinsert the left-hand side:

[SµνV , SαβV ] = ih̄
[
gαµSνβV − g

ανSµβV − g
µβSναV + gβνSµαV

]
which is the same relation as 2.16.

(c) For a rotation by an angle θ about the z axis, we have:

Λµ
ν =


1 0 0 0
0 cos θ −sin θ 0
0 sin θ cos θ 0
0 0 0 1


Show that

Λ = exp(−iθS12
V /h̄)

First we’ll work out S12
V :

(S12
V )ρτ =

h̄

i
(g1ρδ2

τ − g2ρδ1
τ )

This works out to be:

S12
V =

h̄

i


0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0


For notational convenience, we’ll define

A =
i

h̄
S12
V =


0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0


Now exp(−iθS12

V /h̄) = e−θA, so we can expand in a Taylor Series:

e−θA = 1− θA+
1

2!
θ2A2 − 1

3!
θ3A3 +

1

4!
θ4A4 − 1

5!
θ5A5 +

1

6!
θ6A6 + . . .

Now, note that

A2 = −


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


Hence, AA2 = −A, so we can simplify our expansion:

e−θA = 1− θA+
1

2!
θ2A2 +

1

3!
θ3A− 1

4!
θ4A2 − 1

5!
θ5A+

1

6!
θ6A2 + . . .
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e−θA = 1 +

(
−θ +

1

3!
θ3 − 1

5!
θ5 + . . .

)
A+

(
1

2!
θ2 − 1

4!
θ4 +

1

6!
θ6 + . . .

)
A2

e−θA = 1− (sin θ)A+ (1− cos θ)A2

From which we plug in A and see:

e−iθS
12
V /h̄ =


1 0 0 0
0 cos θ −sin θ 0
0 sin θ cos θ 0
0 0 0 1

 = Λ

as expected.

(d) For a boost by rapidity η in the z direction, we have:

Λµ
ν =


cosh η 0 0 sinh η

0 1 0 0
0 0 1 0

sinhη 0 0 cosh η


Show that

Λ = exp(iηS30
V /h̄)

First we’ll work out S30
V :

(S30
V )ρτ =

h̄

i
(g3ρδ0

τ − g0ρδ3
τ )

This works out to be:

S30
V =

h̄

i


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0


For notational convenience, we’ll define

A =
i

h̄
S30
V =


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0


Now exp(iηS30

V /h̄) = eηA, so we can expand in a Taylor Series:

eηA = 1 + ηA+
1

2!
η2A2 +

1

3!
η3A3 +

1

4!
η4A4 +

1

5!
η5A5 + . . .

Now, note that

A2 =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1


Further, AA2 = A, so we can simplify our expansion:

eηA = 1 + A+
1

2!
A2 +

1

3!
A+

1

4!
A2 +

1

5!
A+ . . .
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eηA = 1 +

(
η +

η3

3!
+
η5

5!
+ . . .

)
A+

(
η2

2!
+
η4

4!
+ . . .

)
A2

eηA = 1 + (sinh η)A+ (cosh η − 1)A2

From which we plug in A and see:

exp(iηS30
V /h̄) =


cosh η 0 0 sinh η

0 1 0 0
0 0 1 0

sinh η 0 0 cosh η

 = Λ

as expected.

Problem 2.10. Prove that the Lorentz Group is a group.

Closure. Let’s assume that Λ′ and Λ′′ are Lorentz Matrices. We must prove that their
product is also in the group. In index notation, the product is: Λµ

α = Λ′µγ Λ′′γα . Now, we want
to consider the following:

gµνΛ
µ
αΛν

β = gµνΛ
′µ
γ Λ′′γα Λ′νδ Λ′′δβ

These are in index notation, so we can move stuff around without worrying about commu-
tation relations.

gµνΛ
µ
αΛν

β = gµνΛ
′µ
γ Λ′νδ Λ′′γα Λ′′δβ

Now Λ′ is in the group, so by the definition of the group:

gµνΛ
µ
αΛν

β = gγδΛ
′′γ
α Λ′′δβ

Λ′′ is also in the group, so we do this trick again:

gµνΛ
µ
αΛν

β = gαβ

and so Λ is a member of the group, and therefore the group is closed.

Inversion. We can rewrite the definition of the group:

ΛνρΛ
ν
σ = gρσ

Raise the ρ index on both sides:
Λρ
νΛ

ν
σ = gρσ

which is
Λρ
νΛ

ν
σ = δρσ

On the other hand, by definition,

(Λ−1)ρνΛ
ν
σ = δρσ

From which it follows that:
(Λ−1)ρν = Λ ρ

ν

and so the inverse exists and is a member of the group.
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Identity. The 4x4 identity matrix will do, we just have to show that it’s a member of
the group.

gµνΛ
µ
ρΛ

ν
σ = gµνδ

µ
ρδ
ν
σ = gρσ

which is the definition of the group. Thus, the identity exists.

Association. The group’s operator is matrix multiplication, which is associative.

Problem 2.11. Show that propriety and orthochronaity are subgroups of the
Lorentz Group.

It should be obvious that these are subsets of the Lorentz Group; it remains to show that
they are groups in their own right.

We’ve already proved that all Lorentz Group Members have inverses and an associative
operator. The proposed subgroups use the same operator as the groups themselves, so asso-
ciativity is fine.

Rewriting the inverse equation (Srednicki 2.5), we have: (Λα
β)−1 = Λ α

β = Λσ
γgσβg

γα. Taking
the determinant of both sides shows that the inverse has the same determinant as the original
function. Taking the zero-zero component shows that Λ0

0 will be the same for the original
Λ as well as its inverse. Hence, inverses are members of the subgroup.

The identity is the 4x4 identity matrix, which is proper and orthochronous. So the identity
is in the subgroup.

It remains to show closure. The product of two matrices with determinant 1 will have
determinant 1, and so propriety is closed.

The hard part of this problem is proving that orthochronality is closed. First, we note
that inverses will be included in the subgroup, so for any orthochronous Lorentz Matrix:

gµν(Λ
−1)µαΛν

β = gαβ

Now we use the definition of the inverse:

gµνΛ
µ
α Λν

β = gαβ

Playing with the indices, we can put this in the form:

Λα
µΛµβ = gαβ

From which it follows that:

Λ0
µΛµ0 = gµνΛ

0νΛµ0 = g00 = −1

Further:

−Λ00Λ00 +
3∑
i=0

Λ0iΛi0 = −1
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hence:
3∑
i=1

Λ0iΛi0 = −1 + Λ00Λ00 ≤ Λ00Λ00 (2.11.1)

Now let’s imagine the product of two orthochronous Lorentz Matrices:

Λ = AB

Λµ
ν = gανA

µβB α
β

Hence:
Λ0

0 = g00A
0βB 0

β

Λ0
0 = −A0βB 0

β

Λ0
0 = −gδβA0βBδ0

Λ0
0 = A00B00 −

3∑
i=1

A0iBi0

By the Schwartz Inequality (with the inner product of A and B defined such that its square
magnitude is given on the left side of the equation),

|
3∑
i=1

A0iBi0|2 ≤
3∑
i=1

|A0iAi0|
3∑
j=1

|B0jBj0|

Using equation (2.11.1):

|
3∑
i=1

A0iBi0|2 ≤ (A00)2(B00)2

Thus, in our definition for Λ0
0, the second term has less magnitude than the first term. Hence,

it follows that the second term cannot reverse the sign of the first term. Nor can it make
the sign zero, since we proved already that |Λ0

0| ≥ 1. Hence, the sign is completely deter-
mined by the first term, from which it is obvious that Λ will be orthochronous if A and B are.

As a fun fact, notice that if A and B are both non-orthochronous, then their product will
be orthochronous. This means that non-orthochronality is not closed, and is therefore not
a group (it’s also not a group because it has no identity). Conversely, if A is orthochronous
and B is not, then the product will be non-orthochronous (which proves nothing about the
group, but might be useful elsewhere).
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