
Srednicki Chapter 16
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November 29, 2012

Srednicki 16.1. Compute the O(λ2) correction to V4 in φ4 theory (see problem
9.2). Take V4 = λ when all four external momenta are on shell, and s = 4m2.
What is the O(λ) contribution to C?

In φ4 theory, the first-order correction to the vertex is:
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where, by conservation of momentum, ps = `− k1 − k2, pt = `− k1 − k3, pu = `− k1 − k4.

Assessing the values of these diagrams in the usual way, we have:

iV4 = −iZλλ+
1

2
(−iZλλ)2

(
1

i

)2 ∫
dd`

(2π)d
∆̃(`2)∆̃((`− k1 − k2)2)

+
1

2
(−iZλλ)2

(
1

i

)2 ∫
dd`

(2π)d
∆̃(`2)∆̃((`− k1 − k3)2)

+
1

2
(−iZλλ)2

(
1

i

)2 ∫
dd`

(2π)d
∆̃(`2)∆̃((`− k1 − k4)2) +O(λ4) (16.1.1)

Now let’s consider the two propagators in the second term, using Feynman’s Formula:

∆̃(`2)∆̃((`− k1 − k2)2) =

∫
dF2

[
x1`

2 + x2(`− k1 − k2)2 +m2
]−2

which is:

∆̃(`2)∆̃((`− k1 − k2)2) =

∫ 1

0

dx1dx2
[
x1`

2 + x2(`− k1 − k2)2 +m2
]−2

δ(x1 + x2 − 1)

Now we do the x1 integral, and rename x2 → x. We find:

∆̃(`2)∆̃((`−k1−k2)2) =

∫ 1

0

dx
[
`2 − x`2 + x`2 + xk21 + xk22 − 2`xk1 − 2`k2x+ 2k1k2x+m2

]−2

1



Now we define q = `− k1x− k2x. Then,

∆̃(`2)∆̃((`− k1 − k2)2) =

∫ 1

0

dx
[
q2 − x2(k21 + 2k1k2 + k22) + xk22 + xk21 + 2k1k2x+m2

]−2

Now we define D = x(1− x)(k1 + k2)
2 +m2. Then:

∆̃(`2)∆̃((`− k1 − k2)2) =

∫ 1

0

dx
[
q2 +D

]−2

Now let’s write out the full second term of equation (16.1.1):

iV4, term2 =
1

2
λ2
∫

ddq

(2π)d

∫ 1

0

dx(q2 +D)−2

Now we make the Wick Rotation:

iV4, term2 =
i

2
λ2
∫

ddq̄

(2π)d

∫ 1

0

dx(q̄2 +D)−2

We can see that this integral divergs for d ≥ 4. Evaluating the integral for d < 4, the result
from equation 14.27 is:

iV4, term2 =
iλ2

2(4π)d/2

∫ 1

0

dx Γ

(
2− d

2

)
D−2+d/2

Now we define ε = 4− d, so that we can take the limit as d→ 4 (equivalently, as ε→ 0):

iV4, term2 =
iλ2

2(4π)2−ε/2
Γ
(ε

2

)∫ 1

0

dx D−ε/2

Now we move the mass dimensionality onto µ̃ (ie define λ→ λµ̃ε/2):

iV4, term2 =
iλ2µ̃ε

2(4π)2−ε/2
Γ
(ε

2

)∫ 1

0

dx D−ε/2

which gives:

iV4, term2 =
iλ2

2(4π)2
Γ
(ε

2

)∫ 1

0

dx

(
4πµ̃2

D

)ε/2
Now we take ε→ 0:

iV4, term2 =
iλ2

2(4π)2

(
2

ε
− γ
)∫ 1

0

dx

[
1 +

ε

2
ln

(
4πµ̃2

D

)]
Expanding:

iV4, term2 =
iλ2

2(4π)2

∫ 1

0

dx

[
2

ε
− γ + ln

(
4πµ̃2

D

)]
Now we define: 4πµ̃2 = eγµ2. Then:

iV4, term2 =
iλ2

2(4π)2

∫ 1

0

dx

[
2

ε
− γ + ln

(
eγµ2

D

)]
2



Breaking up the logarithm, we have:

iV4, term2 =
iλ2

2(4π)2

∫ 1

0

dx

[
2

ε
+ ln

(
µ2

D

)]
Using the explicit form of D, and integrating the first term:

iV4, term2 =
iλ2

2(4π)2

[
2

ε
+

∫ 1

0

dx ln

(
µ2

x(1− x)(k1 + k2)2 +m2

)]
(16.1.2)

Note that we have (k1 + k2)
2 = −s = −4m2, where this last equality is due to our normal-

ization condition. So:

iV4, term2 =
iλ2

2(4π)2

[
2

ε
+

∫ 1

0

dx ln

(
µ2

−x(1− x)m2 +m2

)]
which is:

iV4, term2 =
iλ2

2(4π)2

[
2

ε
+

∫ 1

0

dx ln

(
µ2

(1− 2x)2m2

)]
Breaking up the logarithm:

iV4, term2 =
iλ2

2(4π)2

[
2

ε
+ 2

∫ 1

0

dx ln

(
µ/m

1− 2x

)]
This integral can be done by hand, the result is:

iV4, term2 =
iλ2

16π2

[
1

ε
+ ln

( µ
m

)
+ 1

]
(16.1.3)

What about the third and fourth terms of equation (16.1.1)? Going back to equation (16.1.2),
we take the substitution k2 → k3 (for t-channel) and k2 → k4 (for u-channel). Our on-shell
condition requires that t = u = 0. Then, both the third and fourth terms are given by:

iV4, terms 3 & 4 =
iλ2

(4π)2

[
1

ε
+ ln

( µ
m

)]
(16.1.4)

where the integral is trivial since the x terms vanish.

Now we go back to the equation (16.1.1):

iV4 = −iZλλ+
iλ2

16π2

[
3

ε
+ 3ln

( µ
m

)
+ 1

]
+O(λ4)

Hence,

V4 = −Zλλ+
3λ2

16π2

[
1

ε
+ ln

( µ
m

)
+

1

3

]
+O(λ4)

We define Zλ = 1 + C, where C is at least of order λ (we know it can’t be of lower order,
since any terms of lower order will be set to zero by the normalization of V4). Then,

V4 = −λ− Cλ+
3λ2

16π2

[
1

ε
+ ln

( µ
m

)
+

1

3

]
+O(λ4)
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Now, we don’t like how this is dependent on µ, and infinite! To avoid this, we subsume these
terms into C. Hence, we take:

C =
3λ

16π2

[
1

ε
+ ln

( µ
m

)
+

1

3

]
− κC +O(λ2)

This gives:
V4 = −λ+ κC +O(λ4)

Using our analogy to equation 16.14, we take κC = 0. Then,

V4 = −λ+O(λ4)

and:

C =
3λ

16π2

[
1

ε
+ ln

( µ
m

)
+

1

3

]
+O(λ2)

Note: There is a typo in the problem statement, see Srednicki’s errata.

Srednicki 16.2. Repeat problem 16.1 for the theory of problem 9.3.

It is helpful to refer back to the solution to problem 10.2. The diagrams are obviously
the same as the previous problem, but we must carefully consider the arrows. Using the
Feynman Rules in problem 10.2, and choosing to let k1 and k2 be the a-type particles, we
draw the arrows like this:
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Which of these diagrams is s-channel? We could write a very formal argument, but instead
let’s just notice that in the previous problem, the s-channel is the only one that carried any
momentum across the loop when the masses were on-shell. Hence, the first diagram is still
the s-diagram.

What’s different from the previous problem? The arrows and the symmetry factors. The
arrows don’t matter, because the swapped arrows also have swapped signs on the momenta
(see the solution to problem 10.2), so this is inconsequential. The symmetry factors are
different though: the t- and u-channel diagrams have a symmetry factor of one, and so the
diagrams contribute twice as much as before. Using equations (16.1.3) and (16.1.4), then,
we have:

iV4 = −iZλλ+
iλ2

16π2

[
5

ε
+ 5ln

( µ
m

)
+ 1

]
+O(λ4)

which, after we absorb our divergences, infinities, and normalizing conventions into Zλ, gives
us:

C =
5λ

16π2

[
1

ε
+ ln

( µ
m

)
+

1

5

]
+O(λ2)

V4 = −λ
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