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Srednicki 15.1. In this problem, we will verify the result of problem 13.1 to O(α).
(a) Let Πloop be given by the first line of equation 14.32, with ε > 0. Show that,
up to O(α2) corrections,

A = Π′loop(−m2)

Then use Cauchy’s integral formula to write this as

A =

∮
dw

2πi

Πloop(w)

(w + m2)2

where the coutour of integration is a small counterclockwise circle around −m2

in the complex w plane.

Using equation 14.32, we have:

Π(k2) = Πloop(k
2)− Ak2 −Bm2 +O(α2)

which implies:
Π′(k2) = Π′loop(k

2)− A+O(α2)

Taking k2 = −m2, and neglecting second-order corrections:

Π′(−m2) = Π′loop(−m2)− A

The left hand side is zero by the boundary condition (equation 14.8), so;

A = Π′loop(−m2)

as expected. Now recall that Cauchy’s integral formula is that:

f (n)(a) =
n!

2πi

∮
f(w)

(w − a)n+1
dw

Taking n = 1 and a = −m2, we have:

A = Π′(−m2) =
1

2πi

∮
Πloop(w)

(w +m2)2
dw
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also as expected.

(b) By examining equation 14.32, show that the only singularity of Πloop(k2)
is a branch point at k2 = −4m2. Take the cut to run along the negative real axis.

Let’s remember what a branch point is. A branch point is when the function is discon-
tinuous when evaluated around a circle of the complex plane. Therefore, 0 is a branch point
of the natural logarithm. To see this, let’s start at z = Reiθ, where R is arbitrarily small.
Recall the definition of the complex log function: ln z = ln r + i(θ + 2kπ), where kπ is an
integer. Let’s say we start with θ = 0, and so ln(z) = ln(r). After one complete loop, we
have ln(z) = ln(r) + i(2π), which is not the same value. Hence there is a discontinuity, since
ln(Re0) = lnR, but ln(Re0−iε) = lnR + i(2π − ε). More to the point, one loop puts us on a
different branch (value of kπ), hence the name.

The same argument could be used for any negative point – for example at -3, we have
ln z = ln

√
9 + 6εcosθ + ε2 + i(θ + 2kπ). One loop around will take us back to where we

started with an additional factor of i2π just as before, so the discontinuity is still there.

On the other hand, if D is real and positive, then we have the real natural log function,
which is not multi-valued. Using the discussion in the last paragraph of chapter 15, we
conclude that there is a branch cut whenever k2 < −4m2, and a branch point at the end,
when k2 = −4m2. That accounts for every possible value of k, and so we’ve identified all
the singularities (there may be singularities in terms of other variables, like ε, but we are
not concerned with those since they are not being integrated over).

(c) Distort the contour in equation 15.15 to a circle at infinity with a detour
around the branch cut. Examine equation 14.32 to show that, for ε > 0, the
circle at infinity does not contribute. The contour around the branch cut then
yields:

A =

∫ −4m2

−∞

dw

2πi

1

(w + m2)2
[Πloop(w + iε)−Πloop(w − iε)]

where ε is infinitesimal (and is not to be confused with ε = 6− d).

We see that at large w, A ∼ Πloop(w)

w2 . Using equation 14.32, we have A ∼ |w|−1−ε/2, from
which it is obvious that the contribution to A vanishes in the limit of large |w|.

(d) Examine equation 14.32 to show that the real part of Πloop(w) is contin-
uous across the branch cut, and that the imaginary part changes sign, so that

Πloop(w + iε)−Πloop(w − iε) = −2iIm Πloop(w − iε)

In equation 14.32, we have
D1−ε/2

And so, above the branch cut we have:

(|D|ei(π−ε))1−ε/2
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Now take ε→ 0, and we have
(|D|eiπ)1−ε/2

This gives:
|D|1−ε/2eiπ(1−ε/2) = |D|1−ε/2 [cos(π − ε/2) + isin(π − ε/2)] (15.1.1)

Below the branch cut we have:
(|D|e−i(π−ε))1−ε/2

Taking ε→ 0 and simplifying, remembering that cosine is even while sine is odd, we have:

|D|1−ε/2eiπ(1−ε/2) = |D|1−ε/2 [cos(π − ε/2)− isin(π − ε/2)] (15.1.2)

Comparing (15.1.1) and (15.1.2), we see that the real parts are equal and the imaginary
parts are opposite, exactly as claimed.

(e) Let w = −s in equation 15.16, and use equation 15.17 to get

A = −1

π

∫ ∞
4m2

ds
Im Πloop(−s− iε)

(s−m2)2

Use this to verify the result of problem 13.1 to O(α).

This equation follows directly from applying the result of part (d) to the result of part
(c).

As for verifying the result from problem 13.1 – recall that our result from problem 13.1
was:

Z−1
φ = 1 +

∫ ∞
4m2

ds ρ(s) = (1 + A)−1

Of course, A−1 = 1− A+O(α2), so:

A = −
∫ ∞

4m2

ds ρ(s)

Now we use equation 15.13:

A = − 1

π

∫ ∞
4m2

ds
Im Π(−s)

(−s+m2 −Re Π(−s))2 + (Im Π(−s))2

Since Π(−s) is of O(α) (or higher), squaring them does not contribute to the order at which
we are working. Adding the factor of iε is also allowed (ε by definition is negligable after all,
so we can add it wherever we want. It’s getting rid of ε that’s the hard part!). This yields
equation 15.18.

Srednicki 15.2. Dispersion relations. Consider the exact Π(k2), with ε = 0.
Assume that its only singularity is a branch point at k2 = −4m2, that it obeys
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equation 15.17, and that Π(k2) grows more slowly than |k2|2 at large |k2|. By
recapitulating the analysis in the previous problem, show that:

Π′′(k2) =
2

π

∫ ∞
4m2

ds
Im Π(−s− iε)

(k2 + s)3

This is a twice subtracted dispersion relation. It gives Π′′(k2) throughout the
complex k2 plane in terms of the values of the imaginary part of Π(k2) along the
branch cut.

We begin with Cauchy’s Integral Formula:

Π′′(k2) = 2!

∮
dw

2πi

Π(w)

(w − k2)3

This is exactly equation 15.15 with Πloop → 2Π(w), m2 → −k2 and 2→ 3 in the denominator
exponent. Taking these substitutions to equation 15.18 yields 15.19.
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