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Srednicki 13.1. Consider an interacting scalar field theory in d spacetime dimen-
sions,
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where L£;(¢) is a function of ¢ (and not its derivatives). The exact momentum-
space propagator for ¢ can be expressed in Lehmann-Kallén form by equation

13.17. Find a formula for the renormalizing factor Z, in terms of p(s). Hint:
consider the commutator [¢(x), d(y)].

Fortunately we have a hint, otherwise this problem might seem baffling. Following the
hint, we’ll start by evaluating (0|¢(x)¢(y)|0), using equation 13.13.
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Expanding the differential, we have:
Olo()i)0) = [ %H wi [ st | %H
Next, let’s set 2 = 9%, ie take the commutator at equal times:
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These k-integrals are delta functions:
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Simplifying:
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If we do the same thing with the position of x and y swapped, we get the same thing with
a minus sign (the y in the exponent is now positive, so the time-component is negative).
Hence, the commutator is:
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ds,o(s)} (13.1.1)

Next, let’s try to find a conjugate variable for ¢. Recall by definition that:
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where we use the usual convention of Greek indices to sum over all time-space dimensions
and Latin indices to sum over spatial indices only. Hence,

(y) = Zy¢ (13.1.2)

Substituting (13.1.2) into (13.1.1), we find:
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Now we use equation 3.28 on the left side (generalizing to d dimensions):
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These have no effect on the bra-ket, which then vanishes (because (0]0) = 1). Then:
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from which we conclude: .
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