Srednicki Chapter 12 QFT Problems & Solutions

A. George

September 5, 2012

Srednicki 12.1. Express $\hbar c$ in GeV fm, where 1 fm = 1 fermi = 10^{-13} cm.

A published value of hc is $1.239eV\mu m$. Multiply by 10^{-9} to get to GeV μ m and by 10^9 to get to GeV fm, and divide by 2π to get to \hbar rather than h. Then,

 $\hbar c = .197~{\rm GeV~fm}$

Srednicki 12.2. Express the masses of the proton, neutron, pion, electron, muon, and tau in GeV.

Just look up the masses in kg, multiply by c^2 , and convert to GeV. Alternatively, just look up the masses in GeV online. The results are:

 $m_p = 0.938 \text{ GeV}$ $m_n = 0.939 \text{ GeV}$ $m_{\pi} = .139 \text{ GeV}$ $m_e = .000511 \text{ GeV}$ $m_{\mu} = .105 \text{ GeV}$ $m_{\tau} = 1.777 \text{ GeV}$

Srednicki 12.3. The proton is a strongly interacting blob of quarks and gluons. It has nonzero charge radius r_p , given by $r_p^2 = \int d^3x \rho(r) r^2$, where $\rho(r)$ is the quantum expectation value of the electric charge distribution inside the proton. Estimate the value of r_p , then look up its measured value. How accurate was your estimate?

We know the mass of the proton, .938 GeV, and we want units of distance, so we take $\frac{\hbar}{m_p c} = 1.32$ fm. The measured value is .877 fm, so we were off by about 50%. Not bad, considering that we didn't even use charge at all!