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Srednicki 11.1. (a) Consider a theory of two real scalar fields A and B with an
interaction L1 = gAB2. Assuming that mA > 2mB, compute the total decay rate
of the A particle at tree level.

Equation 11.49 is:

Γ =
1

S

∫
dΓ

Using equation 11.48:

Γ =
1

S

∫
1

2E1

|τ |2dLIPS2(k1)

Using equation 11.30:

Γ =
1

S

∫
1

2E1

|τ |2 |~k′1|
16π2
√
s
dΩCM

Now using equation 11.2:

Γ =
1

S

∫
1

2E1

|τ |2
1

2
√
s

√
s2 − 2(m2

1′ +m2
2′)s+ (m2

1′ −m2
2′)

2

16π2
√
s

dΩCM

Now remember that for decay, s = m2
1 = E2

1 . So we can simplify,

Γ =
1

S

∫
1

2m1

|τ |2
1

2
√
m2

1

√
m4

1 − 2(m2
1′ +m2

2′)m
2
1 + (m2

1′ −m2
2′)

2

16π2m1

dΩ

Cleaning up:

Γ =
1

S

1

64π2m3
1

∫
|τ |2
√
m4

1 − 2(m2
1′ +m2

2′)m
2
1 + (m2

1′ −m2
2′)

2dΩ (11.1.1)

where we dropped the CM subscript since everything is either taken in the CM frame or
frame-invariant. Notice that this is a totally general result for one scalar decaying into two
scalars, and we may wish to use this later.
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In any case, we’re presently presented with two identical scalars, so m1′ = m2′ = mB.
Then:

Γ =
1

S

1

64π2m3
A

∫
|τ |2
√
m4
A − 4m2

Bm
2
AdΩ

which is:

Γ =
1

S

1

64π2mA

√
1− 4

m2
B

m2
A

∫
|τ |2dΩ (11.1.2)

Again, this result is valid for any one scalar decaying into two identical scalars, so we may
wish to use this later.

Now we need the matrix element and the symmetry factors, both of which require the
diagram. The only diagram for this process is:

- ��
����*
��

HH
HHHHj
HH

A

B

B

Clearly, this diagram’s matrix element is only the vertex factor, since the external lines
add only a factor of 1. Remember how we construct the vertex factor (here I’ll use the
practical rules outlined in the ch. 10 slides):

1. Turn derivatives into ikµ. There are no derivatives, so this doesn’t matter.

2. Rub out the fields. This leaves us with g.

3. Add a factor of i. This leaves us with ig.

4. Multiply through by symmetry. In this case, swapping the B vertices is the same as
swapping the propagators themselves, so S = 2, and the vertex factor is 2ig.

With this, the decay rate is given by:

Γ =
g2

32π2mA

√
1− 4

m2
B

m2
A

∫
dΩ

The integral is obviously 4π. Thus,

Γ =
g2

8πmA

√
1− 4

m2
B

m2
A

(b) Consider a theory of a real scalar field φ and a complex scalar field χ with
L1 = gφχ†χ. Assuming that mφ > 2mχ, compute the total decay rate of the φ
particle at tree level.
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Now we go back to equation (11.1.2):

Γ =
1

S

1

64π2mφ

√
1− 4

m2
χ

m2
φ

∫
|τ |2dΩ

This time the vertex factor is ig and the symmetry factor is one. Then,

Γ =
g2

64π2mφ

√
1− 4

m2
χ

m2
φ

∫
dΩ

which gives:

Γ =
g2

16πmφ

√
1− 4

m2
χ

m2
φ

Srednicki 11.2. Consider Compton Scattering, in which a massless photon is
scattered by an electron, initially at rest (this is the FT frame). In problem 59.1,
we will compute |τ |2 for this process (summed over the possible spin states of
the scattered photon and electron, and averaged over the possible spin states of
the initial photon and electron), with the result:

|τ |2 = 32π2α2

[
m4 + m2(3s + u)− su

(m2 − s)2
+

m4 + m2(3u + s)− su

(m2 − u)2
+

2m2(s + u + 2m2)

(m2 − s)(m2 − u)

]
+ O(α4)

where α = 1/137.036 is the fine-structure constant.

(a) Express the Mandelstam variables s and u in terms of the initial and fi-
nal photon energies ω and ω′.

Using equation 11.5,
s = −(k1 + k2)2 = −k2

1 − 2k1k2 − k2
2

k1 is the photon so k2
1 = −m2

1 = 0. k2 is the electron, so k2
2 = −m2, where we’ll use m to

represent the mass of the electron. Thus,

s = m2 − 2k1k2

Now k1 =

(
ω
~ω

)
and k2 =

(
m
0

)
. Hence,

s = m2 + 2mω

Similarly, u = (−k2 − k′1)2, so

u = m2 − 2ω′m

(b) Express the scattering angle θFT between the initial and final photon three-
momenta in terms of ω and ω′.
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By conservation of four-momentum:

(k′2)2 = (k1 + k2 − k′1)2

which gives:
−m2 = k2

1 + k2
2 + k′21 + 2k1 · k2 − 2k2 · k′1 − 2k1 · k′1

Hence:
(ω − ω′)m = (ωω′ − ~ω · ~ω′)

1− cosθ = m
ω − ω′

ωω′

cos θ = 1−m
(

1

ω′
− 1

ω

)
(c) Express the differential scattering cross-section (in the FT frame) in terms
of ω and ω′. Show that your result is equivalent to the Klein-Nishina formula

dσ

dΩFT

=
α2

2m2

ω′2

ω2

[
ω

ω′
+
ω′

ω
− sin2θFT

]
Using the chain rule:

dσ

dΩFT

=
dσ

dt

dt

dΩFT

(11.2.1)

We’ll deal with each term separately, starting with the first term. Using the result from part
(a), we rewrite the matrix element in terms of ω and ω′. This is a horrible calculation, but
the result is:

|τ |2 = 32π2α2

[
m2

(
1

ω2
+

1

ω′2
− 2

ωω′

)
+ 2m

(
1

ω
− 1

ω′

)
+
ω′

ω
+
ω

ω′

]
Now use the result from part (b). The first and second terms are rewritten:

|τ |2 = 32π2α2

[
1− 2 cos θ + cos2θ + 2 cos θ − 2 +

ω′

ω
+
ω

ω′

]
Rewriting:

|τ |2 = 32π2α2

[
−1 + cos2θ +

ω′

ω
+
ω

ω′

]
Using the Pythagorean Identity:

|τ |2 = 32π2α2

[
ω′

ω
+
ω

ω′
− sin2θ

]
(11.2.2)

Now we use equation 11.34:
dσ

dt
=

1

64πs|~k1|2
|τ |2
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This is why equation 11.9 is useful – we can rewrite this as:

dσ

dt
=

1

64πm2|~k1|CM
|τ |2

Now |~k1|CM refers to the photon, so:

dσ

dt
=

1

64πm2ω2
|τ |2

Plugging in equation (11.2.2), we have:

dσ

dt
=

1

64πm2ω2
32π2α2

[
ω′

ω
+
ω

ω′
− sin2θ

]
which is:

dσ

dt
=

πα2

2m2ω2

[
ω′

ω
+
ω

ω′
− sin2θ

]
(11.2.3)

The other part of equation (11.2.1) is obtained starting with equation 11.4:

t = m2
1 +m′21 − 2E1E

′
1 + 2|k1||k′1|cosθ

Taking the differential:
dt = 2ωω′dcosθ − (1− cosθ)2ωdω′

Note that holding s constant entails holding ω constant (according to equation 11.9). Next

we’ll take the differential of the result from part (b), with the result that dω′ = (ω′)2

m
dcosθ.

Hence,

dt = 2ωω′dcosθ − (1− cosθ)2ω (ω′)2

m
dcosθ

Now use the result of part (b) to substitute for (1− cosθ):

dt = 2ωω′dcosθ −m
(

1

ω′
− 1

ω

)
2ω

(ω′)2

m
dcosθ

Now we simplify:
dt = 2ω′2dcosθ

which, according to the convention used between equations 11.32 and 11.33, gives:

dt =
ω′2

π
dΩ

It may seem as though we’re off by a negative sign, but in fact we’re not. Equation 11.4 has
many square roots in it, which essentially gives us the power to assign the signs by hand.
Cross-sections must always be positive, so we choose to ignore the negative sign generated
in evaluating dcosθ. Hence, the result is that:

dt

dΩ
=
ω′2

π
(11.2.4)

5



Using (11.2.3) and (11.2.4) in (11.2.1), we find:

dσ

dΩ
=
ω′2

π

πα2

2m2ω2

[
ω′

ω
+
ω

ω′
− sin2θ

]
which is:

dσ

dΩ
=

α2ω′2

2m2ω2

[
ω′

ω
+
ω

ω′
− sin2θ

]
which is the Klein-Nishina formula.

Srednicki 11.3. Consider the process of muon decay, µ− → e−ν̄eνµ. In section
88, we will compute |τ |2 for this process (summed over the possible spin states
of the decay products, and averaged over the possible spin states of the initital
muon), with the result:

|τ |2 = 64G2
F(k1 · k′2)(k′1 · k′3)

where GF is the Fermi Constant, k1 is the four-momentum of the muon, and
k′1,2,3 are the four-momenta of the ν̄e, νµ, and e−, respectively. In the rest frame
of the muon, its decay rate is therefore:

Γ =
32G2

F

m

∫
(k1 · k′2)(k′1 · k′3)dLIPS3(k1)

where k1 = (m,0), and m is the muon mass. The neutinos are taken to be mass-
less, and the electron mass is 200 times less than the muon mass, so we can take
the electron to be massless as well. To evaluate Γ, we perform the following
analysis.

(a) Show that:

Γ =
32G2

F

m

∫
d̃k
′
3k1µk

′
3ν

∫
k′µ2 k′ν1 dLIPS2(k1 − k′3)

We start with the given:

Γ =
32G2

F

m

∫
(k1 · k′2)(k′1 · k′3)dLIPS3(k1)

Then we simply use equation 11.23:

dLIPS3(k1) = (2π)4δ4(k1 − k′1 − k′2 − k′3)d̃k
′
1d̃k

′
2d̃k

′
3

dLIPS2(k1 − k3) = (2π)4δ4(k1 − k′1 − k′2 − k′3)d̃k
′
1d̃k

′
2

From which it follows that we can rewrite Γ as:

Γ =
32G2

F

m

∫
(k1 · k′2)(k′1 · k′3)dLIPS2(k1 − k′3)d̃k

′
3
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or, equivalently:

Γ =
32G2

F

m

∫
d̃k
′
3k1µk

′
3ν

∫
k′µ2 k

′ν
1 dLIPS2(k1 − k′3)

(b) Use Lorentz Invariance to argue that, for m1′ = m2′ = 0,∫
k′µ1 k′ν2 dLIPS2(k) = Ak2gµν + Bkµkν

The left hand side of this equation is a tensor with two indices. It can depend on only one
four vector: kµ. It cannot depend on kµ1 or kµ2 – for any given µ, ν, those terms will simply
contribute a (frame-dependent) constant. Hence,∫

k′µ1 k
′ν
2 dLIPS2(k) = Ak2gµν +Bkµkν

By dimensional analysis, A and B must be dimensionless. Everything except the index-
holders is required to be Lorentz-invariant in any case, and the only Lorentz-invariant scalar
that’s possible is k2 = −m2, which is not dimensionless. Hence, A and B are just numbers.

(c) Show that, for m1′ = m2′ = 0,∫
dLIPS2(k) =

1

8π

Using equation 11.30:

dLIPS2(k) =
|~k′1|

16π2
√
s
dΩCM

Of course,
√
s = mµ for decay. Further, |k′1| = mµ

2
for decay into two massless particles (in

the CM frame). Then,

dLIPS2(k) =
mµ

32π2mµ

dΩCM

=⇒
∫
dLIPS2(k) =

1

32π2

∫
dΩCM =

1

8π

(d) By contracting both sides of equation 11.55 with gµν and with kµkν, and using
equation 11.56, evaluate A and B.

Contracting with gµν first, we have:∫
(k′1 · k′2)dLIPS2(k) = 4Ak2 +Bk2

Now note that:
k2 = (k′1 + k′2)2 = k′21 + k′22 = 2k′1 · k′2 (11.3.1)

Hence,
1

2
k2

∫
dLIPS2(k) = 4Ak2 +Bk2
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Using the result of part (c), and canceling the factors of k2 (this is a Lorentz-invariant
constant, so it must have an inverse).

1

16π
= 4A+B (11.3.2)

Now let’s go back to equation 11.55 and contract with kµkν :∫
(k′1 · k)(k′2 · k)dLIPS2(k) = Ak4 +Bk4

Using equation (11.3.1): ∫
1

2
k2 1

2
k2

∫
dLIPS2(k) = Ak4 +Bk4

Canceling the k4 and using the result of part (c)

1

32π
= A+B (11.3.3)

We now have a system of two equations and two unknows (equations (11.3.2) and (11.3.3)).
Doing the algebra, we find

A = 1
96π

B = 1
48π

(e) Use the results of parts (b) and (d) in equation 11.54. Set k1 = (m, 0̃) and
compute dΓ/dEe; here Ee = E′3 is the energy of the electron. Note that the max-
imum value of Ee is reached when the electron is emitted in one direction, and
the two neutrinos in the opposite direction; what is this maximum value?

The result of part (a) is:

Γ =
32G2

F

m

∫
d̃k
′
3k1µk

′
3ν

∫
k′µ2 k

′ν
1 dLIPS2(k1 − k′3)

Inserting the result of part (b):

Γ =
32G2

F

m

∫
d̃k
′
3k1µk

′
3ν

(
A(k1 − k′3)2gµν +B(k1 − k′3)µ(k1 − k′3)ν

)
Inserting the result of part (d):

Γ =
G2
F

3πm

∫
d̃k
′
3k1µk

′
3ν

(
(k1 − k′3)2gµν + 2(k1 − k′3)µ(k1 − k′3)ν

)
Next we simplify:

Γ =
G2
F

3πm

∫
d̃k
′
3k1µk

′
3ν

(
(k2

1 + k′23 − 2k1 · k′3)gµν + 2kµ1k
ν
1 − 2kµ1k

′ν
3 − 2k′µ3 k

ν
1 + 2k′µ3 k

′ν
3

)
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k2
1 = −m2 and k′23 = 0. Further, we decided to work in the rest frame of the muon, so
k1 · k′3 = −mEe. So:

Γ =
G2
F

3πm

∫
d̃k
′
3k1µk

′
3ν

(
(−m2 + 2mEe)g

µν + 2kµ1k
ν
1 − 2kµ1k

′ν
3 − 2k′µ3 k

ν
1 + 2k′µ3 k

′ν
3

)
Now we’ll distribute the four-vectors in front of the term:

Γ =
G2
F

3πm

∫
d̃k
′
3

(
(−m2 + 2mEe)k1µk

′
3νg

µν + 2k1µk
′
3νk

µ
1k

ν
1 − 2k1µk

′
3νk

µ
1k
′ν
3 − 2k1µk

′
3νk
′µ
3 k

ν
1 + 2k1µk

′
3νk
′µ
3 k
′ν
3

)
which gives:

Γ =
G2
F

3πm

∫
d̃k
′
3

(
(−m2 + 2mEe)(k1 · k′3) + 2(k2

1)(k1 · k′3)− 2(k2
1)(k′23 )− 2(k1 · k′3)2 + 2(k1 · k′3)(k′23 )

)
Now recall that k1 · k′3 = −mEe and k2

3 = 0 and k2
1 = −m2. Then:

Γ =
G2
F

3πm

∫
d̃k
′
3

(
(m3Ee − 2m2E2

e ) + 2m3Ee − 2m2E2
e

)
which is:

Γ =
mG2

F

π

∫
d̃k
′
3

(
Eem−

4

3
E2
e

)
Now we expand the differential:

Γ =
mG2

F

π

∫
d3k′3

(2π)32Ee

(
Eem−

4

3
E2
e

)
and switch to polar coordinates:

Γ =
mG2

F

π

∫
E2
edEedΩ

(2π)32Ee

(
Eem−

4

3
E2
e

)
The angular integrals are trivial, since the electron emission is isotropic:

Γ =
mG2

F

π(2π)2

∫
dEe

(
E2
em−

4

3
E3
e

)
Now let’s write this as a differential:

dΓ

dEe
=
mG2

F

4π3

(
E2
em−

4

3
E3
e

)
This is the distribution of the electron energy. We want to calculate the maximum electron
energy, so we set the derivative of this equal to zero:

0 =
mG2

F

(2π)2

(
2Eem− 4E2

e

)
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and solve:
0 = (2m− 4Ee)

and so:

Ee,max =
m

2

Just as the problem statement says, conservation of four-momentum in the muon’s rest frame
tells us that if the electron gets the maximum amount of energy (half), then the other two
particles will both have to move in the opposite direction for four-momentum to be conserved.

(f) Perform the integral over Ee to obtain the muon decay rate Γ.

This is just an integral; the only thing to note is that the limits of integration are from
0 to m

2
. The result is:

Γ =
mG2

F

4π3

∫ m/2

0

dEe

(
E2
em−

4

3
E3
e

)

=⇒ Γ =
m5G2

F

192π3

(g) The measured lifetime of the muon is 2.197× 10−6 s. The muon mass is
105.66 MeV. Determine the value of GF in GeV−2. Your answer is too low by
about 0.2%, due to loop corrections to the decay rate.

τ = 1
Γ
, so Γ = 455, 166.135 s−1. Multiplying by Planck’s constant (to change units), we

find that Γ = 2.9959× 10−19 GeV.

Now from the result of part (f):

GF =

√
192π3Γ

m5

Plugging in numbers:

GF =

√
192π3(2.9959× 10−19 GeV)

(.105665 GeV5)

The result is that:
GF = 1.164× 10−5 GeV−2

The accepted value is 1.166× 10−5 GeV−2, which is about .2% higher as advertised.

(h) Define the energy spectrum of the electron P(Ee) = Γ−1dΓ/dEe. Note that
P(Ee)dEe is the probability for the electron to be emitted with energy between
Ee and Ee + dEe. Draw a graph of P(Ee) versus Ee/mµ.

P (Ee) is given by:

P (Ee) =
48

m

(
E2
e

m2
− 4

3

E3
e

m3

)
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Integrating this from Ee = 0 to Ee = m
2

gives one, as we would expect. Now we switch
variables, from Ee → x = Ee

m
. Note that if this new variable is to represent a probability,

then this integration measure must also switch, dEe → mdx. Otherwise,
∫
P (x)dx 6= 1,

which is a problem. Then,

P (x) = 48

(
x2 − 4

3
x3

)
This problem’s notation is a little bit confusing: we are not actually plotting P (Ee), but
rather P (Ee/m). Nonetheless, the physical significance is still the same, so this is an appro-
priate answer to the question. Here is the graph:

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

-1

1

2

3

4

5

6
Probability vs. Energy of Emitted Electron

electron energy/muon mass

Probability 
Amplitude

By the way, don’t be alarmed that the y-axis is greater than 1! The probability is defined
to be the integral of the amplitude between 0 and m/2, and the maximum possible such
integral is one. In other words, the probability density can be as high as we like.

We conclude that the electron is most likely to receive the maximum amount (half) of
the energy. This is an interesting result; we might have naively assumed that the most likely
outcome was all three particles receiving the same amount of energy, and going in three
uncorrelated directions.

Srednicki 11.4. Consider a theory of three real scalar fields A, B, and C with:

L = −1

2
∂µA∂µA−

1

2
m2

AA2 − 1

2
∂µB∂µB−

1

2
m2

BB2 − 1

2
∂µC∂µC−

1

2
m2

CC2 + gABC

Write down the tree-level scattering amplitude (given by the sum of the con-
tributing tree diagrams) for each of the following processes:

AA→ AA

AA→ AB

AA→ BB

11



AA→ BC

AB→ AB

AB→ AC

For two-body scattering, the only tree-level diagrams are those shown in figure 10.2 in the
text: s-channel, t-channel, and u-channel, all with two vertices. We can see by inspecting
the Lagrangian that this theory has only one vertex. Lint = gABC, so the vertex must join
an A, a B, and a C propagator, with a vertex factor of ig (just rub out the fields, there are
no derivatives and no symmetry factors).

Now we try to draw these diagrams: it quickly becomes obvious that there are no diagrams
for the first, second, fourth, or sixth processes. Hence,

τAA→AA = 0

τAA→AB = 0

τAA→BC = 0

τAB→AC = 0

The second process has two diagrams, the t-channel and the u-channel. The value of each
diagram (iτ) is given by the vertex factor (ig) as well as the internal propagator. The
internal propagator is always a C scalar, but the momentum is different: in the t-channel,
the momentum is k1−k′1, while in the u-channel, it is k1−k′2. This is a good time to use the
Mandelstam variables. Using the Feynman rules from chapter 10, the internal propagators
contribute −i

m2
C−t

and −i
m2
C−u

, respectively. Putting all this together, we have:

iτ = ig2 1

m2
C − t

+ ig2 1

m2
C − u

Note that we do not have to sum over “multiple copies” of the same diagram. For example,
the t-channel diagram cannot have the A scalars flipped, since that turns it into a u-channel
diagram. Both the A scalars and B scalars could be flipped, but then we’ve recovered a
rotation of the original diagram.

In fact, this is a general rule for four-particle tree diagrams such as these: in calculating
Z(J), there are 24 ways to pair derivatives to sources, 8 for each diagram. The factor of 8 is
cancelled by the symmetry factors of the diagrams with sources, so each diagram is counted
exactly once.

Hence,

τAA→BB = g2

(
1

m2
C − t

+
1

m2
C − u

)

τAB→AB = g2

(
1

m2
C − s

+
1

m2
C − u

)
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