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Srednicki 10.1. Use equation 9.41 to rederive equation 10.9.

Equation 9.41 is:

〈0|Tφ(xn) . . . φ(x1)|0〉 =
〈∅|TφI(xn) . . . φI(x1)e

−i
∫
d4xHI(x)|∅〉

〈∅|Te−i
∫
d4xHI(x)|∅〉

In our case, we have four terms, so:

〈0|Tφ(x4)φ(x3)φ(x2)φ(x1)|0〉 =
〈∅|TφI(x4)φI(x3)φI(x2)φI(x1)e−i

∫
d4xHI(x)|∅〉

〈∅|Te−i
∫
d4xHI(x)|∅〉

Next, we need to figure out what HI is. Equation 9.4 gives us the Hamiltonian, of which
the first, second, and fourth of which comprise H0 and the counterm Lagrangian. Note that
equation 10.9 only goes through second order, and the counterterms are already O(g2) – so
there’s no way to build a connected diagram involving a counterterm at the order to which
we are working.

All of which is just to say that HI = −Y φ − 1
6
Zggφ

3. But we can make this even eas-
ier: since we want to ignore tadpoles, we don’t need this first term. Hence, HI = −1

6
Zggφ

3.
But don’t forget our result in part (d) of problem 9.5, which shows that our φ terms should
really be φI terms (that’s also why we’re allowed to use the Heisenberg-picture Hamiltonian
in the Interaction-picture expression). Hence, the right side of our expression becomes:

=⇒
〈∅|TφI(x4)φI(x3)φI(x2)φI(x1)

∑∞
N=0

1
N !

(
i
6
Zgg

∫
d4xφ3

I(x)
)N |∅〉

〈∅|T
∑∞

M=0
1
M !

(
i
6
Zgg

∫
d4xφ3(x)

)M |∅〉
Let’s notice again that equation 10.9 only goes through second-order. Moreover, the first-
order terms involve an odd number of fields, and therefore vanish by Wick’s Theorem (same
for third-order terms). So, we can expand, leaving just the zero-order and second-order
terms:

=⇒
〈∅|TφI(x4)φI(x3)φI(x2)φI(x1)

(
1 + i2

622!
Z2
gg

2
∫
d4xd4yφ3

I(x)φ3
I(y) +O(g4)

)
|∅〉

〈∅|T
(
1 + i2

622!
Z2
gg

2
∫
d4xd4yφ3

I(x)φ3
I(y) +O(g4)

)
|∅〉

For simplicity, I’m going to supress the factors of I in the subscript. But it is important to
remember that these are still free fields.

=⇒
〈∅|Tφ(x4)φ(x3)φ(x2)φ(x1)

(
1 + i2

622!
Z2
gg

2
∫
d4xd4yφ3(x)φ3(y) +O(g4)

)
|∅〉

〈∅|T
(
1 + i2

622!
Z2
gg

2
∫
d4xd4yφ3(x)φ3(y) +O(g4)

)
|∅〉
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Now we’re ready to expand the denominator. Recall that (1 + x2)−1 = 1− x2 + . . .. We are
only working to O(g2), so we simply move the denominator to the numerator and swap the
sign. Hence,

=⇒
[
〈∅|Tφ(x4)φ(x3)φ(x2)φ(x1)

(
1 +

i2

622!
Z2
gg

2

∫
d4xd4yφ3(x)φ3(y) +O(g4)

)
|∅〉
]
×[

〈∅|T
(

1− i2

622!
Z2
gg

2

∫
d4xd4yφ3(x)φ3(y) +O(g4)

)
|∅〉
]

Multiplying these, we get one term of order zero and two terms of order two. The zero-order
term doesn’t have any vertices, so it cannot possibly be a connected diagram. Hence, we
ignore that term, and keep only the O(g2) terms (all other terms will be of order g4 or
higher).

=⇒ 〈∅|Tφ(x4)φ(x3)φ(x2)φ(x1) (1) |∅〉 × 〈∅|T −(i2)

622!
Z2
gg

2

∫
d4xd4yφ3(x)φ3(y)|∅〉

+〈∅|Tφ(x4)φ(x3)φ(x2)φ(x1)

(
i2

622!
Z2
gg

2

∫
d4xd4yφ3(x)φ3(y)

)
|∅〉 × 〈∅|T (1) |∅〉

This is a good opportunity to make some simplifications. Get rid of the i terms and notice
that the last term in the above expression is one. Additionally, let’s choose different variables
for the interaction terms so that we can tell them apart. Let’s define y1 = y2 = y3 = y, and
the same for x – but to avoid confusion, let’s reassign x→ z = z1 = z2 = z3. Then,

=⇒
Z2
gg

2

622!

∫
d4yd4z〈∅|Tφ(x4)φ(x3)φ(x2)φ(x1)|∅〉〈∅|Tφ(y1)φ(y2)φ(y3)φ(z1)φ(z2)φ(z3)|∅〉

+
−Z2

gg
2

622!

∫
d4yd4z〈∅|Tφ(x4)φ(x3)φ(x2)φ(x1)φ(y1)φ(y2)φ(y3)φ(z1)φ(z2)φ(z3)|∅〉

Now we’re ready to use Wick’s Theorem, equation 8.17. Remember that we can use Wick’s
Theorem because our terms marked φ are actually φI , and we proved in problem 9.5(a) that
the φIs are free fields. The problem is that there are many possible pairings! We can simplify
a lot by dividing the second term in two parts: one part with all the x terms paired with
each other, and one part with at least one x paired with a y or a z. We see then that this
first part cancels with the first term. Hence,

=⇒
−Z2

gg
2

622!

∫
d4yd4z〈∅|Tφ(x4)φ(x3)φ(x2)φ(x1)φ(y1)φ(y2)φ(y3)φ(z1)φ(z2)φ(z3)|∅〉∗

where the * is to remind us that the x’s are not allowed to be paired exclusively with each
other. Now let’s apply Wick’s Theorem:

=⇒
−Z2

gg
2

622!

1

i5

∫
d4yd4z

∑
pairings∗

∆(x1 − y1)∆(x2 − x3)∆(x4 − y2)∆(y3 − z1)∆(z2 − z3)

To make this look a little more like equaton 10.9, let’s recall that Zg = 1 +O(g2). We don’t
have any zero-order terms to which we could add the nontrivial part of Zg, so Zg will equal
one to the order in which we are working. So,

=⇒ (ig)2
(

1

i

)5
1

622!

∫
d4yd4z

∑
pairings∗

∆(x1− y1)∆(x2− x3)∆(x4− y2)∆(y3− z1)∆(z2− z3)
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Next, remember that we want only connected diagrams. In this case, that means that none
of the xs should be paired with each other: they should all be paired with an interaction
term in some way. Further, none of the y (z) terms should be paired with another y (z)
term, since that will yield a disconnected diagram, with a loop on one vertex and three
external lines on the other vertex. This implies that all diagrams will have to have a vertex
of ∆(yi − zj), with the other ys and zs paired to xs.

So, which pairings are allowed? We’re allowed ∆(y1 − z1)∆(x1 − y2)∆(x2 − y3)∆(x3 −
z2)∆(x4 − z3). We can switch the three ys and the three zs around, so this term shows up
3! 3! = 36 times. Additionally, we can swap yi ←→ zi; this will not be significant after
integration. So, we get 72 copies of this term: ∆(y−z)∆(x1−y)∆(x2−y)∆(x3−z)∆(x4−z).

The only thing we haven’t accounted for is my arbitrary decision to pair x1 and x2 with
y while pairing x3 and x4 with z. These are dummy variables, so it’s acceptable to arbitrar-
ily pair x1 with y (because I can just redefine the dummy variable if I want to pair it with
z). But, I have to allow for the swap x2 ←→ x3 or x2 ←→ x4 (because I can’t redefine the
dummy variable in some places but not others). These terms are not identical to the first
term, and I will get 72 copies of each. Hence,

=⇒ (ig)2
(

1

i

)5 ∫
d4yd4z∆(y − z)× [∆(x1 − y)∆(x2 − y)∆(x3 − z)∆(x4 − z)

+∆(x1 − y)∆(x3 − y)∆(x2 − z)∆(x4 − z) + ∆(x1 − y)∆(x4 − y)∆(x3 − z)∆(x2 − z)]

which is equation 10.9.

Srednicki 10.2. Write down the Feynman rules for the complex scalar field of
problem 9.3.

We’ve had several problems involving this theory, so let’s summarize what we know be-
fore moving on.

The relationship between a, b, a†, b†, φ, φ†, and the arrows:

• incoming a particles (a†) have φ† expansions, and arrows that point toward the vertex.

• incoming b particles (b†) have φ expansions, and arrows that point away from vertex.

• outgoing a particles (a) have φ expansions, and arrows that point away from the vertex.

• outgoing b particles (b) have φ† expansions, and arrows that point toward the vertex.

How do we know all this? We worked out the expansions in problem 5.1 and 3.5. In problem
8.7, we took as our source term Jφ†+J†φ, and set arrows toward the source for J† and away
from the source for J . After differentiating with respect to the source, we’re left with arrows
toward the (missing) source for φ and away from the (missing) source for φ†. Since the source
is at the opposite end than the vertex, we therefore achieve the above arrow conventions.

We should also recall our results involving the vertex, from problem 9.3:
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• The vertex joins two φ particles and two φ† particles. From the above, we see that we
must have two arrows pointing toward the vertex, and two arrows pointing away from
the vertex.

• The vertex factor is −iZλλ.

Notice that I no longer include the integral in the vertex factor (this is a change from my
solution to problem 9.3 – see the slides for further discussion). This is a subtle and perhaps
unintentional change in Srednicki’s convention – previously, the entire expansion of Z(J)
(integrals and all) had to be represented with the diagram – and so the vertex factor had
to include the integral (see for example eq. 9.11). But in this section, and for the rest of
the book, the integrals are included separately (in the LSZ formula, for example), it is not
necessary to represent them in the vertex factors. That’s why Srednicki specifes 12 lines
below eq. 9.11 that the vertex factor includes the integral, but then seems to change his
mind in Feynman Rule #6 on page 77.

Next we have this business involving the two types of arrows: the charge arrows discussed
above, and the momentum arrows that are typically assigned toward the vertex for incoming
particles, and away from the vertex for outgoing particles. Notice that the a particles already
follow this convention, so we can just use the charge arrows for the momentum arrows. b
particles follow the opposite of this convention, but all is well if we assign a negative mo-
mentum along the direction of the charge arrow.

Hence, let us write down the Feynman Rules:

1. Draw lines (called external lines) for each incoming and each outgoing particle. The
lines must have arrows on them:

• Arrows toward the vertex for incoming a and outgoing b particles.

• Arrows away from the vertex for incoming b and outgoing a particles.

2. Leave one end of each external line free, and attach the other end to a vertex at
which exactly four lines meet. This vertex must have two arrows pointing toward the
vertex and two arrows pointing away. Include extra internal lines in order to do this,
assigning whichever arrow is needed to complete the vertex. In this way, draw all
possible diagrams that are topologically inequivalent.

3. Assign each line its own four-momentum. The four momentum of an external line
should be the four momentum of the corresponding particle. Assign a particles a
positive four-momentum, and b particles a negative four-momentum.

4. Think of the four-momenta as flowing along the arrows, and conserve four-momentum
at each vertex. For a tree-diagram, this fixes the momenta on all the internal lines.

5. The value of a diagram consists of the following factors:

• for each external line, 1;

• for each internal line with momentum k, −i/(k2 +m2 − iε)
• for each vertex, -iZλλ
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6. A diagram with L closed loops will have L internal momenta that are not fixed by rule
no. 4. Integrate over each of these momenta `i with measure d4`i/(2π)4.

7. A loop diagram may have some left-over symmetry factors if there are exchanges of
internal propagators and vertices that leave the diagram unchanged; in this case, divide
the value of the diagram by the symmetry factor associated with exchanges of internal
popagators and vertices.

8. Include diagrams with the counterterm vertex that connects two propagators, each
with the same four-momentum k. The value of this vertex is −i(Ak2 + Bm2), where
A = Zφ − 1 and B = Zm − 1, and each is O(g2).

9. The value of iτ is given by a sum over the values of all these diagrams.

Srednicki 10.3. Consider a complex scalar field φ that interacts with a real scalar
field χ via L1 = gχφ†φ. Use a solid line for the φ propogator and a dashed line
for the χ propagator. Draw the vertex (remember the arrows!), and find the
associated vertex factor.

Drawing the vertex is the easy part. Recall that we defined in problem 9.3 that φ prop-
agators point away from the vertex, and φ† vertices point toward the vertex. Thus, the
vertex is:

�
���	

@@R@
@

Now for the vertex factor. We’ll do this in analogy to the φ3 case in the text. In the
case of φ3, we had a Lagrangian of 1

6
Zggφ

3 and a vertex factor of iZgg.

In our case, the Lagrangian is gχφ†φ, so we might expect the vertex factor to be 6ig. But
looking closely over chapter 9, we see that Srednicki treated the numerical factors separately
from the vertex factors. This turned out to be with good reason, because there are 3! identi-
cal ways in which the vertex legs could pair with the propagators, neatly canceling the factor
of 6. In our case, the numerical factor is one, but there is also only one identical way in
which the vertex legs can pair with the propagators. So, the numerical factors again neatly
cancel, and the vertex factor is in fact ig.

Srednicki 10.4. Consider a real scalar field with L1 = 1
2
gφ∂µφ∂µφ. Find the

associated vertex factor.

The interaction Lagrangian is:

L1 =
1

2
gφ∂µφ∂µφ

Now we’ll take the Fourier Transforms. Note that we assume that the ks are positive,
meaning that the (momentum) arrows are all coming toward the vertex. If any point away
from the vertex, the corresponding k in the vertex factor will be made negative.

L1 =
1

2
g

∫
d4k1d

4k2d
4k3e

ik1x1φ̃(k1)∂
µ
2 e

ik2x2φ̃(k2)∂µ,3e
ik3x3φ̃(k3)
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Next we’ll determine vertex factors, using the prescription presented in the slides:

V.F. = i
δ

δφ̃(k1)

δ

δφ̃(k2)

δ

δφ̃(k3)

1

2
g

∫
d4k1d

4k2d
4k3e

ik1x1φ̃(k1)∂
µ
2 e

ik2x2φ̃(k2)∂µ,3e
ik3x3φ̃(k3)

Taking the derivatives:

V.F. = −i(k2 · k3)
δ

δφ̃(k1)

δ

δφ̃(k2)

δ

δφ̃(k3)

1

2
g

∫
d4k1d

4k2d
4k3e

ik1x1φ̃(k1)e
ik2x2φ̃(k2)e

ik3x3φ̃(k3)

To avoid ambiguity, let’s change the dummy variable inside the integrand:

V.F. = −i(k2 · k3)
δ

δφ̃(k1)

δ

δφ̃(k2)

δ

δφ̃(k3)

1

2
g

∫
d4k′1d

4k′2d
4k′3e

ik′1x1φ̃(k′1)e
ik′2x2φ̃(k′2)e

ik′3x3φ̃(k′3)

Next, let’s take the functional derivatives:

V.F. = −i(k2 · k3)
1

2
g

∫
d4k′1d

4k′2d
4k′3e

ik′1x1eik
′
2x2eik

′
3x3δ4(k1 − k′1)δ4(k2 − k′2)δ4(k3 − k′3)

Doing the integral, we have:

V.F. = −i(k2 · k3)
1

2
geik1x1eik2x2eik3x3

Now all these xs are the same, so:

V.F. = −i(k2 · k3)
1

2
gei(k1+k2+k3)x

We’ll define the position at the vertex to be zero, causing the plane wave to vanish. Then,

V.F. = −i(k2 · k3)
1

2
g

Finally, we arbitrarily paired derivatives with fields. These could be paired in any combi-
nation, so we must add on the other five combinations. Why add them? Because there are
actually six diagrams with six different permutations of the labels, and six different vertex
factors. We consider all of them identical (since x1 = x2 = x3 = x), so we combine them
in one diagram – but then we need to account for the sum in the vertex factor itself. By
the way, if the vertex factors were identical, we would just have to account for an overall
numerical factor (as indeed happens in problem 10.5).

V.F. = −i(k2 · k3 + k3 · k2 + k1 · k3 + k3 · k1 + k2 · k1 + k1 · k2)
1

2
g

which implies
V.F. = −ig(k2 · k3 + k1 · k3 + k1 · k2)

or, perhaps more compactly (since conservation of momentum at the vertex implies that
k1 + k2 + k3 = 0:

V.F. =
ig

2
(k21 + k22 + k23)

Another advantage of writing it in this way is that if any of the particles are outgoing (mean-
ing that ki → −ki in the vertex factor, the vertex factor will not be affected.
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Srednicki 10.5. The scattering amplitudes should be unchanged if we make a
field redefinition. Suppose, for example, we have

L = −1

2
∂µφ∂µφ−

1

2
m2φ2

and we make the field redefinition

φ→ φ+ λφ2

Work out the Lagrangian in terms of the redefined field, and the corresponding
Feynman rules. Compute (at tree level) the φφ→ φφ scattering amplitude. You
should get zero, because this is a free-field theory in disguise.

The first part of this is not difficult. We make the substitution, noting that ∂µφ →
∂µφ+ 2λφ∂µφ, and the same for the covariant derivative. Hence,

L = −1

2
[∂µφ+ 2λφ∂µφ] [∂µφ+ 2λφ∂µφ]− 1

2
m2(φ+ λφ2)2

After simplifying, we write this as L = L0 + L1. The L0 is given by equation 8.4, while L1

is given by:

L1 = −2λφ∂µφ∂µφ− 2λ2φ2∂µφ∂µφ−m2λφ3 − 1

2
m2λ2φ4

Now we’re ready to determine the Feynman rules. This is a real scalar field, so the Feynman
rules from φ3 theory still hold up to the vertices. This theory allows both three-point and
four-point vertices. We must determine the vertex factors.

The first term has vertex factor −2iλ(k21 + k22 + k23), as in problem 10.4.

The second term has vertex factor −4iλ2(k21 + k22 + k23 + k24). The procedure for deter-
mining this is the same as in problem 10.4 – but we can cut to the end of the page by
replacing the derivatives with ik, accounting for all the permutations (2! from the derivative
terms and 2! from the other terms) and ignoring the fields.

The third term has vertex factor −3!im2λ (this is the same as the φ3 theory, modified
only for the differences in the constants of the Lagrangian)

The fourth term has vertex factor −1
2
4!im2λ2. There are no derivatives, so we just get

rid of the fields, and account for the permutations.

Putting this all together, we have the total vertex factors:

• The three-point vertex gets a V.F. of −2iλ(k21 + k22 + k23)− 6im2λ

• The four-point vertex gets a V.F. of −4iλ2(k21 + k22 + k23 + k24)− 12im2λ2

All other Feynman Rules are unchanged.

Now for the φφ → φφ scattering process. The good news is that we can use equation
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10.14, and our job is to determine τ . We don’t even have to draw our own diagrams: the
diagrams involving the three-point vertex are those in figure 10.2, and there is only one
diagram involving the four-point vertex – the one with four external lines.

What is the value of the diagrams? The four-point vertex diagram gets a factor of 1 for
all the external lines – so all that’s left is the vertex, which gets a factor of −4iλ2(k21 +
k22 + k23 + k24)− 12im2λ2 = −4iλ2 [(k21 + k22 + k23 + k24) + 3m2]. Rewriting this a bit, we have:
−4iλ2 [(k21 +m2) + (k22 +m2) + (k23 +m2) + (k24 +m2)−m2]. Since all four particles are ex-
ternal, they are on shell, and k2i = −m2. Then, the value of the diagram is simply 4im2λ2.

The s-channel diagram has two vertices and a propagator, giving 4iλ2 [(k21 + k22 + k23) + 3m2]

[(k21 + k22 + k23) + 3m2]
[

1
(k1+k2)2+m2

]
Adding in the t-channel and u-channel will be the same

except for the propagator. Hence, the sum of all four diagrams is:

iτ = 4im2λ2+4iλ2
[
(k21 + k22 + k23) + 3m2

]2 [ 1

(k1 + k2)2 +m2
+

1

(k1 − k′1)2 +m2
+

1

(k1 − k′2)2 +m2

]
Now let’s distribute the vertex factor.

iτ = 4im2λ2+4iλ2

[
[(k21 + k22 + k23) + 3m2]

2

(k1 + k2)2 +m2
+

[(k21 + k22 + k23) + 3m2]
2

(k1 − k′1)2 +m2
+

[(k21 + k22 + k23) + 3m2]
2

(k1 − k′2)2 +m2

]
Now let’s distribute the mass in each of the numerators. In all cases, the vertex consists of
one internal line and one propagator. As with the four-point vertex, the external lines are
on shell and vanish. So:

iτ = 4im2λ2 + 4iλ2

[
[k2int +m2]

2

(k1 + k2)2 +m2
+

[k2int +m2]
2

(k1 − k′1)2 +m2
+

[k2int +m2]
2

(k1 − k′2)2 +m2

]
For each channel, we know what the momentum of the internal vertex is:

iτ = 4im2λ2 + 4iλ2

[
[(k1 + k2)

2 +m2]
2

(k1 + k2)2 +m2
+

[(k1 − k′1)2 +m2]
2

(k1 − k′1)2 +m2
+

[(k1 − k′2)2 +m2]
2

(k1 − k′2)2 +m2

]
which is:

iτ = 4im2λ2 + 4iλ2
[
(k1 + k2)

2 +m2 + (k1 − k′1)2 +m2 + (k1 − k′2)2 +m2
]

When all of these binomials are expanded out, we use the relation k2i + m2 = 0 to obtain
(written in a deliberately strange way):

iτ = 4im2λ2 + 4iλ2
[
k21 + 2k1k1 + 2k1k2 − 2k1k

′
1 − 2k1k

′
2

]
This first term is simply −m2; the remaining terms can be factored:

iτ = 4im2λ2 + 4iλ2
[
−m2 + 2k1(k1 + k2 − k′1 − k′2)

]
The term in parenthesis vanishes by conservation of four-momentum. The remaining terms
also cancel, giving:

iτ = 0

which makes sense, since there should be no scattering amplitude between two free fields.
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