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Unit 9: The Path Integral for the Interacting 
Field Theory 



Overview 
n This is it!  We’ll add an interaction term to our 

Lagrangian and compute Z(J). 
¨ From Z(J) we can calculate correlation functions 
¨ From correlation functions we can use the LSZ 

formula to calculate transition amplitudes.  
¨ In fact, Z(J) is the gift that keeps on giving!  We’ll 

find other uses for it later.   

n Along the way, we’ll discover Feynman 
Diagrams! 



The φ3 Theory Lagrangian 

n  We’ll assume that our interacting Lagrangian looks like this: 

n  In chapter 5, we agreed to renormalize this according to the 
following scheme: 

n  Notice that we have 4 constraints (the two above, m = mass, 
g = coupling constant) for 4 unknowns. 

n  This is called φ3 theory.  It is not physically realistic because 
as φ gets arbitrarily large, L gets arbitrarily negative.  But, it 
works well enough in perturbation theory to be an excellent 
example for us. 



The φ3 Theory Path Integral 

n  We would like to find Z(J).   

 where L = L0 + L1 
 

n  Remember that J is an arbitrary, external source.  It’s 
useful because it allows us to take functional derivatives 
to calculate correlation functions – but we always set it to 
zero before getting a physical answer. 

n  We’ll break the Lagrangian into two parts, and pull the 
second one out of the integral – exactly as we did in 
equation 6.22. 



The φ3 Theory Path Integral, cntd. 

n  Does this integral look familiar?  It’s the free-field path 
integral!  Let’s call the result Z0.  Then, 

 where 
 
 

 the result from last time.   
¨  Note that the equality has become a proportionality, since 

invoking our “epsilon trick” to determine Z0(J) destroyed the 
normalization.   

¨  Free fields shouldn’t transition, so we can renormalize by hand 
by requiring Z0(0) = 1. 



The φ3 Theory Lagrangian, again 

n  Since L0 must be the free field Lagrangian, it follows that 
L1 must be: 

n  These last three terms are just the renormalization 
requirements.  Let’s count them separately.  Then, our 
Lagrangian has three components: 

 



Organizing Z1(J) 
n  There are 2P sources, but 3V of them are killed by the 

derivatives.  So, the number of sources for a given term 
is E = 2P – 3V 

n  There are P propagators 
n  The phase factor is iP-2V 

n  Let’s expand one term: 
¨  after 0 derivatives: 1 term 
¨  after 1 derivative: (2P) terms 
¨  after 2 derivatives: (2P) * (2P-1) terms 
¨  after 3 derivatives: (2P) * (2P-1) * (2P-2) terms 
¨  after 3V derivatives: (2P) * (2P-1) * … * (2P – 3V + 1) terms 
¨  ie, a given term above will have (2P)! / (2P – 3V)! terms after 

expansion 
n  But, many of these terms are equivalent.  We’d like to 

know how many terms have a given V and E.   



The φ3 Theory Path Integral, again 

n  Let’s plug in L1.  Note that the argument of L1 (phi) is 
replaced by –i d/dJ.  Then, neglecting the counterterms: 

n  These are just two exponentials, so we’ll expand: 



Proto-Feynman Diagrams 
n  To determine the number of terms with a given E and V, 

we introduce these proto-Feynman diagrams: 
¨  The idea is to represent every term with a diagram 
¨  But we’ll actually work in reverse – draw the diagrams and see 

how many terms correspond to it.   
n  The rules for drawing are this: 

¨  P = ½(E+3V) propagators, represented by a line.  These lines 
include the 1/i factor 

¨  E sources, represented by filled circles.  A filled circle connected 
to a line segment for a source.  This includes the i factor and the 
integral. 

¨  Vertices connecting three line segments for i Zg g d4x 



Proto-Feynman Diagrams: Example 
n  Let’s write the term with E = 1, V = 1.  After simplifying (a lot of 

messy algebra), the term is: 

n  But, many of these are the same: 
¨  24 terms become 4, because the variables that had been different were 

equated after the functional integrals 
¨  4 terms become 1, because the four remaining terms are the same up to 

a dummy variable, which doesn’t matter. 

n  The result is: 

n  In general 
¨  There might be more than one surviving term. 
¨  But, terms with other E, V cannot contribute because they’ll have 

different numbers of Js.   



Proto-Feynman Diagrams: Example 
n  Now let’s draw this: 

1.              is represented by 

2.                               is represented by 

3.                                         is represented by 

4.                                                        is represented by 

 
So this diagram accounts for everything except the factor of 2 



Proto-Feynman Diagrams:  
The Numerical Factor 

n  How can we predict the numerical factor from the diagram? 
¨  1/(V! P! 6V 2P) from the Taylor Series 
¨  But, many of the changes between terms won’t affect the diagram. 

n  We can swap the order of the functional derivatives: (3!)V = 6V terms 
n  Swap the vertices: V! terms 
n  Swap the order of the sources: (2!)P = 2P terms 
n  Swap the propagators: P! terms 

¨  These cancel neatly!  Numerical factor = 1 

n  But did we overcount?   
¨  What if multiple swaps give the same diagram? 
¨  This tends to happen when the diagram has symmetry. 

n  So, must divide our numerical factor by the symmetry factor of 
the diagram.   



Proto-Feynman Diagrams: Example, again 
n  Does our previous diagram have any symmetry? 

n  Swapping the two “ends” of the curved propagator is 
the same as swapping those two legs of the vertex.   
So we overcounted by a factor of 2, and S = 2. 

n  Mathematically, this is because some derivative 
permutations are the same as some source 
permutations.  
¨ For example, imagine derivatives acting on a, b, c, but not d.   

Relabeling the derivatives to act on b, c, d (not a) is the  
same as relabeling the sources to be named b, c, d, a.   



Proto-Feynman Diagrams:  
The Symmetry Factor 

n  Summarizing: we have assumed that the diagrams can be 
redrawn in several ways without changing the diagrams: 
¨  The sources can be swapped: 

n  Remember that  sources are just  combinations of propagators and 
vertices.  Whatever they are, they can be swapped with each other. 

n  We may gain an additional symmetry factor when we examine the 
form of the source. 

¨  The legs of the vertex can be swapped 
¨  The vertices themselves can be swapped 
¨  The end of each propagator can be swapped. 
¨  The propagators themselves can be swapped. 

n  If any distinct combination of the above gives the same result, 
then we have overcounted.  We should then remove one of the 
offending combinations from this list, and divide by the 
symmetry factor.   



General Diagrams 
n  Consider the case with E = 4, V = 4.  There are 

six diagrams, each with a different symmetry 
factor.   
¨ These are all connected 

n  The general diagram is the product of all the 
connected diagrams.   
¨ There is an additional symmetry factor, due to inter-

diagram transposes.  Additionally, a connected 
diagram can appear more than once.  So: 



General Diagrams, Cntd. 
n  What is the additional symmetry factor? 

¨ The total diagram will be unchanged only if all the 
propagators and vertices from one connected diagram 
replace all the propagators and vertices from another, 
identical connected diagram. 
n  Why?  For example, a vertex has three propagators 

attached.  The only way the same vertex can be attached 
to the same propagators –  resulting in an identical 
diagram that needs to be accounted for in the additional 
symmetry factor – is if all the vertices and propagators 
are swapped simultaneously.   
 

n  From this, the additional symmetry factor is obviously 
NI! 



Z1(J) 
n  Did these diagrams help us simplify Z1(J)? 

¨ Yes.  Z1(J) is the sum of these diagrams, so: 

¨ This is a remarkable result: Z1(J) is the exponential of 
the sum of connected diagrams. 

¨ We can also easily impose normalization Z1(0) = 1.  
Just omit the vacuum diagrams (those with no 
sources), so that the exponential will vanish.  Hence, 



Correlation Functions 
n  The whole point of Z(J) is to calculate correlation functions 

for the LSZ formula, so we should calculate some 
correlation functions now. 
¨  Remember that we threw away the counterterms, so we’ll have to 

account for that at some point. 

¨  This is the sum of all diagrams with one source, with the source 
removed.  In fact, this is the functional derivative of the term we 
calculated earlier: 



Correlation Functions, Cntd. 

n  Understanding this: 
¨ There are no terms of order two because one cannot 

draw a diagram with one source and two vertices.   
¨ We set Zg = 1 because Srednicki claims Zg = 1 + 

O(g2) 

n  The problem: 
¨ Remember our normalization agreement: 

¨ This is obviously not true! 



Counterterms 
n  To fix this, need to add one of our counterterms, 

Lct, partial = Yφ 
¨ This introduces a new vertex, one where a phi particle 

stops.  This is represented diagrammatically by an x, 
which accounts for dy, the integral, Y, and i.   

n  To order g (one vertex), this introduces one new 
diagram.  We add this diagram to the sum and 
find that to impose the normalization, we need: 



Counterterms, cntd. 

n  Recall Y is by definition the coefficient of an Hermitian 
operator; it should therefore be real.  Is this real?  To 
see, consider: 

n  So is it real?  Maybe.  But we have another problem: this 
integral diverges at large k. 
¨  Solve this by introducing finite “ultraviolet cutoff” as upper bound 

of the integral.   
n  Does this sound like bull?  Only a little.  There is good reason to 

expect that the QFT should look different above a certain value.  We 
assume only that it looks different in such a way that the 
contribution to the propagator is negligible.   



Counterterms, cntd. 
n  We want this integral to be Lorentz Invariant, so we 

implement the ultraviolet cutoff in a more subtle way 
(eq. 9.22).  The result is: 

n  This is great: convergent and imaginary! 

n  Can also let Λ→∞, since the normalization condition is 
still satisfied. 
¨ The physical meaning of Λ will have to be addressed at 

some point, though.   
¨ Having Y infinite may be disturbing, but we’ll see that such 

terms will cancel when measuring physical properties. 



Counterterms and Tadpoles 
n  Same procedure at higher orders: set power of Y as 

necessary to keep the vacuum expectation value of φ 
set at zero. 

n  So, we have an infinite number of one-source 
diagrams, all of which sum to zero. 
¨ Let’s now replace the source by another diagram.  This 

diagram will act as the source.  The sum is still zero! 
¨ So, we can ignore all these diagrams, since they’ll just be 

cancelled by the Y counterterm. 
¨ “The rule is this: ignore all diagrams that, when a single line 

is cut, falls into two parts, one of which has no sources.”   
These are called tadpoles. 



More Counterterms 

n  Adding other terms to the Lagrangian gives us 
another exponential.  We’ll integrate by parts 
and define A, B = Zφ - 1, Zm - 1.  The result is: 

 where the diagrams are written with the rules 
previously discussed.   

n  This gives a new vertex at which two lines meet.  
The vertex factor is: 
¨ The partial acts on either (but not both) of the 

propagators in the vertex.   



Conclusions 

n Z(J) = exp[i W(J)], where W(J) is the sum 
of all connected diagrams.  The diagrams 
must follow the rules discussed before (no 
tadpoles, two types of vertices, etc.) 

n Of course, all this is just for φ3 theory – 
other theories will have different rules for 
drawing the diagrams (see problems 9.2, 
9.3) 

 


