QFT

Chapter 70: Group Representations

Representation Theory

 We've discussed transformations before, for example the U(1) transformation on a scalar field, which should leave the Lagrangian invariant:

$$\phi \to e^{i\alpha}\phi$$

- In general, this α might not be a scalar, and might not even by commutative.
 - But it can't be just anything. We still need our Lagrangian to be gauge invariant if this is to be useful.
- We can decompose our α into a particular representation, defined by a number of generator matrices T_R.
 - The number of generator matrices is equal to the number of degrees of freedom. These follow commutation relations that define the structure constants.
 - We can, if we desire, change to a different set of traceless basis matrices that follows the same commutation relations.
 - The original set is called "fundamental"
 - The new set is called the D(R) representation, where D(R) is the dimension.
 - For example, taking the complex conjugate of the fundamental representation yields the complex conjugate representation (assuming the fundamental representation is not real).

Adjoint Representation

 The adjoint representation is obtained by setting the generator matrices equal to the structure constants via

$$(T_A^a)^{bc} = -if^{abc}$$

- This is useful because
 - The generator matrices are Hermitian
 - The adjoint representation is real.
 - The dimension D(A) is equal to the number of generators.

Index and Casimir

- Two useful numbers describe a representation:
 - The index is if multiply any two generators together and take the trace; this should give the same constant.
 - The quadratic Casimir is if you multiply a matrix times itself, that should give the same constant every time (multiplied by the identity).

In some sense, these are both measures of normalization, however the Casimir is dimension-independent.

Direct Sums & Products

- Two representations can be combined into one big representation by the direct sum. This is equivalent to having one large matrix with two diagonal blocks.
 - Irreducible representations cannot be split into diagonal blocks.
- Fields can be written with an index like il, where i is in one representation and I is the other representation. These two letters together form one index.

Invariant Symbols

- Some symbols are invariant, in that transforming each index gets us back where we started.
 - In a direct product, these claim one index for each representation.
 - These symbols are a singlet, with a zero generator matrix (as it is invariant). For example, delta or varepsilon can be good invariants.
 - These normally occur in the direct product of two fields, in which case the direct product can be decomposed into a singlet plus everything else (which might decompose further).