

Unit 7: Path Integrals for Harmonic Oscillators

Overview

In this short section, we apply our analysis of path integrals to harmonic oscillators, obtaining some useful formulas.

We'll also encounter Green's Functions for the first time.

Ground State to Ground State Transition Amplitude

The Hamiltonian is:

$$H(P,Q) = \frac{1}{2m}P^{2} + \frac{1}{2}m\omega^{2}Q^{2}$$

So the vacuum-to-vacuum transition amplitude, with an external force, is (from last time):

$$\langle 0|0\rangle_f = \int \mathcal{D}p\mathcal{D}q \, exp \, i \int_{-\infty}^{\infty} dt \left[p\dot{q} - (1 - i\varepsilon)H + fq\right]$$

Now we do two things:

□ We note that: $H \to (1 - i\varepsilon)H$ is equivalent to: $m^{-1} \to (1 - i\varepsilon)m^{-1} \quad m\omega^2 \to (1 - i\varepsilon)m\omega^2$

□ We rewrite in the Lagrangian Formalism

Ground State to Ground State Transition Amplitude

The result is:

$$\langle 0|0\rangle_f = \int \mathcal{D}q \ i \int_{-\infty}^{\infty} dt \left[\frac{1}{2}(1+i\varepsilon)m\dot{q}^2 - \frac{1}{2}(1-i\varepsilon)m\omega^2q^2 + fq\right]$$

- The rest of the section is just evaluating these integrals:
 - □ Take Fourier transforms
 - Integrate over t and E
 - □ Change integration variables
 - Observe that the path integral gives the transition amplitude in a vacuum, which is one.
 - □ Switch to time-variables and invoke a Green's function

Ground State to Ground State Transition Amplitude, Cntd.

None of that math should be new, except maybe Green's functions, which we'll talk about next.

The result is:

$$\langle 0|TQ(t_1)\dots Q(t_{2n})|0\rangle = \frac{1}{i^n} \sum_{\text{pairings}} G(t_{i1} - t_{i2})\dots G(t_{i(2n-1)} - t_{i(2n)})$$

Green's Functions

The equation of motion for our situation is: $\left(\frac{\partial^2}{\partial t^2} + \omega^2\right)\psi(q, t) = f(t)$

It's simpler to solve this with:

$$\left(\frac{\partial^2}{\partial t^2} + \omega^2\right) G(t - t') = \delta(t - t')$$

Then, the solution is given by: $\psi(t) = \int G(t - t')f(t')dt'$