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Unit 6: Path Integrals in Quantum Mechanics 



Overview 
n We introduce path integrals, which will be 

needed to solve the correlation functions in 
the LSZ formula. 

n This section is just about path integrals as 
they appear in Quantum Mechanics.  Along 
the way, we encounter: 
¨ The Heisenberg & Schrödinger pictures 
¨ The Campbell-Baker-Hausdorff formula 
¨ Functional Derivatives 



The Schrödinger Picture 

n  The Schrödinger picture is the “perspective” that 
the states are constant and the operators are time-
dependent. 

n  We want to know that the probability that a particle 
goes from q’,t’ to q’’,t’’. 

n  In the Schrödinger picture, we evaluate this by 
time-evolving the initial state: 



The Heisenberg Picture 

n  The Heisenberg picture is the “perspective” that 
the operators are constant and the states are 
time-dependent. 

n  This time the states of the system are defined at 
particular times, so the transition probability is: 

n  By the way, the kets are related by: 



Heisenberg + Schrödinger 

n  We rewrite the Schrödinger picture, then use the 
last “observation” from the Heisenberg picture: 

n  We can write this by splitting up the exponential 
into many terms and inserting many complete 
sets of position eigenstates: 

 where ∑δt = t’’-t’ 



Evaluate the instantaneous bra-kets 
n  To evaluate this, we need: 

n  Now we use Baker-Campbell-Hausdorff to expand the exponential, 
insert a complete set of momentum eigenstates, and perform the 
integrals (Srednicki eqns. 6.4, 6.5) to achieve 

n  For a non-free particle, we might have both P and Q, rather than just P.  
We adopt Weyl ordering, which means that (using the midpoint rule): 

n  Now we use this in the probability amplitude: 
  
 
 



The Path Integral 

n  As we let δt → 0, we get an infinite number of integrals!  This is 
a path integral – we integrate over every possible path between 
the two points.  The result is: 

    where      is defined in the usual way 
 
n  Question: how do we integrate over a path? 

¨  We break the path parameter (q for example) into an infinite number of 
tiny points, then integrate over all tiny points.  Hopefully a pattern 
emerges, and we don’t have to do an infinite number of integrals!  If not, 
can do so numerically, with a finite path size.  See problem 6.1 (b). 



Special Case 
n  Now let’s assume that H is: 

¨ No more than quadratic in momentum 
¨ The quadratic term in momentum is independent of 

position 

n  In this case, this simplifies a lot: 

n  By the way, we get L by: 
¨ Finding the stationary point (optimization) of the p-integral. 
¨ Plug this solution into                  to get L 



Observation 

n  We’ve met our goal!  Now what good did that do 
us?  We can make some simple observations: 

n  We’ll split this up into an infinite number of 
instantaneous eigenstates, everything is the 
same as before except for a new term of 
               . 



Observation 2 

n Now we note that the following: 

n These operators have to be time-ordered, 
otherwise we can’t split up the time 
interval as required. 
¨ This looks similar to the LSZ Formula 



Functional Derivatives 

n We need functional derivatives to proceed.  
These are defined by: 

n Beyond this, you can “follow your nose” – 
all the other rules for derivatives still hold. 



Observation 3 
n  We can add external forces like this: 

n  Hence: 

n  Now do three things: 
¨  take a bunch of functional derivatives, which will bring 

down a bunch of q’s or p’s.   
¨ Set f(t) = h(t) = 0, returning to the original formula (but now 

with a bunch of extra q’s and p’s. 
¨ Use observation 2 to turn the q’s and p’s into time-

ordered operators.   
n  The result is: 



Other States 

n  Up to now we’ve only considered position 
eigenstates.  What about other eigenstates? 
¨ Add these by adding in two complete sets of bases 

(here we’ll use the ground state): 

¨ We can write this as: 



Special Case: The Ground State 

n This is a bit cumbersome.  Let’s let      be 
an eigenstate of the Hamiltonian.  Now we 
have: 



The Trick 
n We replace H with (1-iε)H: 

¨ This gives a new term: 

¨ As t’ → -∞, all terms except the ground state 
are killed.  So: 



The Trick, continued 

n Now we multiply by a non-orthogonal 
function and integrate.  

n On the right, this is a constant: 

n And the constant doesn’t matter since it 
will be accounted for when the path 
integral is normalized. 



The Trick, summary 

n What did all this do for us? 
¨ If you use (1-iε)H rather than H, in the ket, 

then the initial state will be the ground state, 
for any reasonable boundary conditions.   

¨ This also holds for the bra and the final state. 
¨ So, any reasonable boundary condition will 

result in the ground state with this substitution.   



The Trick: result 

n  We’ll use this formula.   
¨ Using the trick, we let H → (1-iε)H.   
¨  In exchange, we get to let q’, q’’ be whatever we 

want – let’s choose the function that causes the 
integrated norm of ψ0 to be one. 

Srednicki ends by rewriting this again, see 6.22 
and 6.23.   


