QFT

Unit 5: The LSZ Reduction Formula



Overview

If we start off with situation a, what are the odds that
we end up with situation b? This (the S-matrix) can

be calculated by the LSZ Reduction Formula, which

we derive here.

Our answer will be in terms of correlation functions,
which we’ Il learn how to evaluate later.

We' Il also see for the first time:
Renormalization
States with more than one particle



Multi-Particle States

A well-localized particle is given by:
—(k—ky)?
al = /d?’k e 42 a'(k)

Time-evolving this, it spreads out; localized far from
origin att = £,

Now we wish to have an initial state with more than one
particle. The following is an ingenious guess:

i) = lim_a(t)ab()]0)

The interactions and time-dependence might cause problems,
but we avoid that by working at t = £« when it is very spread out.



The (unrefined) LSZ Formula

Putting our results together, we have.:
(fli) = (Olag (00)ay (00)aj (—o0)ab(—00)|0)

If we normalize both states properly (such
thai (i|i) = 1 etc., then this shows the odds
that two particles come In, interact, then

leave.

Not necessarily one since particles could be created or
destroyed.

Could add more operators to initial/final states to
calculate probability of other outcomes.



The (refined) LSZ Formula

Next we simplify. The result is:
(f|i) =i+ /d‘lxleiklxl(—ﬁf +m?) . dr e T (=02 +m?) .. (0|T(x) ... o) ... |0)

(I won’ t go through the math, since something similar is done in
problem 5.1)

Objection: won’ t the(—d* 4+ m?) term vanish?

Answer:
Only in the free theory. In an interacting theory, this
(acting on @) will equal the interacting terms.
Further, there is no ¢ (yet) for these operators to act
on (though perhaps there will be once the correlation
function is worked out).



Check our Assumptions!

We’ re done!

We don’ t yet know what to do with the bra-ket at the
end (the correlation function), but that’ s a subject for
another day.

But, did we make any suspect assumptions?
The “hidden” math is fine, see problem 5.1.

The potential problem is our supposition that the
creation operators for an interacting theory work the
same as the creation operators for an free theory.



Bound States

To look at this problem, we note that an interacting
theory would have bound states:
Ground state with no particles (assumed to be unique).
Excited state with one particle, E2 = m2 + k2

Excited state with n particles, E2 2 nm? + k,?+ ... + k. ?; can be
anything due to relative momentum.

We disallow bound states with lower energy than the free states
(at least for the next few chapters), since they are complicated.

We can use this to check whether the interacting theory
gives the same behavior (with respect to the creation/
annihilation operators) as the free theory



Renormalization: Ground State

Consider: | |
(0] (2)[0) = (0e™ "¢ (0)e'|0)

Time-evolving the vacuum doesn’ t do much:

(0l (2)[0) = {0[¢(0)]0)

We don’ t know what this is — all we know is that it’ s a
Lorentz-Invariant number.

But we want it to be zero. If it’ s not zero, then a,t creates
some linear combination of the ground state, which is bad.

This is because the mode expansion of ¢ now is analogous to that of
the free field, with a = a,.

To enforce this condition, we’ Il just make the substitution:

d(x) = d(x) + v



Renormalization: 1-Particle States

Now consider the same thing for a 1-particle
state:

(plo()|0) = (ple™p(0)e™*|0)
Time-evolving the bras and kets gives:

(p|d(2)]0) = e™*(p|$(0)|0)

This is a Lorentz-invariant function of p. The
only Lorentz-invariant function of p is p2, which is
constant (—m?). Hence, this is a constant.

We want this to be one, just like in free-theory.
To enforce this condition, we’ Il re-normalize .



Renormalization: 2-Particle States

Now consider the same thing for a multi-particle
state:

(p, n|¢(2)|0) = e~ (p, n|¢(0)[0)

The math here is complicated (see Srednicki 40-41),
but the key points are that:

We want this to go to zero, since we don’ t want a,t to
create multi-particle states from the vacuum.

This goes to zero of its own accord, so no further
action is required.

The Riemann-Lebesgue Lemma is helpful here: as sine
waves oscillate more and more rapidly, their integral gets
closer and closer to zero.



Summary

The LSZ Formula is:

(f|i) =i+ /d‘lxleiklxl(—@% +m?) . dr e T (=02 +m?) .. (0|T(x) ... o) ... |0)

The LSZ Formula is valid provided that the
a,T operators work similarly to the at
operators.

(p, n|¢(x)[0) = ™" (p, n|¢(0)[0)
(plo(2)]0) = e (p[¢(0)]0)



Example

Say that our Lagrangian is:

1 1 1
— ___AM S22 13
L 25’ ®0, ¢ 5 o + 6gq5

After shifting and rescaling, we have:

1
L= —%quawaﬂqs — %me%Q + 6Zgggzﬁ?’ + Yo

These four constants are fixed by:
The LSZ conditions (2)
Z.. = 1so that the true mass is enforced

Z. = 1 so that the true “g” (as measured in cross-
sections) is enforced



What' s next?

Next four sections are about these
correlation functions.

Turns out there’ s some interesting physics in
here, including proto-Feynman diagrams

Then, we’ Il use LSZ to calculate some
scattering amplitudes, cross-sections, etc.



