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Chapter 43: The path integral for fermion fields



Review

- If only we could solve path integrals directly!
- Path integral would tell us transition amplitude
- Techniques of chapter 11 to convert transition amplitude to decay rate
or cross-section
- And that’s it! Decay rates and cross-sections are just about the whole
point of QF T

- The “theoretical” underpinnings like symmetries and renormalization would
still come up since we still have to deal with the Lagrangian

- But, stuff like 1-loop corrections, Feynman diagrams, and breakdown of the
perturbative expansion would no longer be concerns, since we would no
longer be using perturbation theory.

- But, the math is too hard.
- Instead, we figure out the free-field path integral and solve it.
« Next two chapters are about this

- Then, the interacting-field path integral can be written in terms of the
free-field one, and solved through perturbation theory



Overview

- The next two chapters are devoted to the path integral for free
Fermion fields:

- Here we follow our nose(s) to arrive at the proper form
- In the next chapter we prove it a little more rigorously

- After that, we add an interaction term, which allows us to draw
Feynman diagrams, compute the correlation functions, plug
into the LSZ formula, and calculate cross-sections. One new
subtlety that will arise is the spins.

- After that, we compute beta functions and deal with one more
subtlety (functional determinants).

- And that’s it for spin-1/2.



Result from Scalar Fields

- The path integral for scalar fields is:
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- where:
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Is the scalar propagator, the thing that, when acted on by the Klein-
Gordon wave operator, gives the delta function.

- Further, recall that we evaluate correlation functions by:
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Complex Fields,

Functional Derivatives of Dirac Fields

- We treat the complex conjugate of the field as a totally
separate field:
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- For the Dirac field, we'll use n rather than J for the
sources.

- Note that we have:
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where the minus sign is due to the anti-commutation

- a functional derivative with respect to an anti-commuting function is itself
defined to be anti-commutating




Dirac Path Integrals

- In analogy with the complex case, we can guess the
appropriate forms for the Dirac Path Integral:

15
ion(z1)  on(y)

/’D\IIDW exp [2 / d*z(Ly +1¥ + @n]

O|TW(z1) ...V (y;)...]0)

Zo(n,7)
- [Z/ dd y(2)S (x —y)n(y)]
S(z —y) = / (d4p (= p+m)er=)

2m)t p* +m? — e

(—i P +m)S(x—y) =0d"(z —y)




Interactions

- As before, we will write:
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where L, is the interacting part of the Lagrangian.
- The overall normalization is fixed by Z(0,0) = 1

- As before, we'll expand both terms and draw Feynman diagrams

- Two extra complications:
- Spinor indices
- Extra minus signs from anticommutation



Majorana Fields

- In analogy with the Dirac case, we have
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where this time the Feynman Propagator has an extra term of C7;
this is the inverse of the Majorana wave operator.



e
Note

- Everything here was just a guess by analogy, though it
would be easy enough to reproduce the results of section

42.

. Instead, we’ll turn to a more formal derivation in the next
chapter.



